
www.manaraa.com

ABSTRACT 

CHANG, CHIH-WEI. Data-Driven Modeling of Nuclear System Thermal-Hydraulics. (Under the 
direction of Dr. Nam T. Dinh). 
 

The goal of this work is to develop a methodology to enhance predictive power of data-

driven nuclear system thermal-hydraulics (NSTH) simulation using machine learning. NSTH 

simulation is instrumental for reactor design, safety analysis, and operator training. Traditionally, 

it takes extensive research efforts to develop insights and mechanistic understanding of physical 

processes in reactor system through analysis of experimental data and capture the data in a compact 

model form. The long time and large resources required for model development constrain the 

simulation code applicability in dealing with newly designed systems involving new geometries 

and new coolants. As an alternative to mechanistic and semi-analytical models, some machine 

learning methodologies, especially deep learning, can effectively capture underlying correlations 

behind multi-scale data using nonparametric models, or so-called data-driven models. Such 

approach is referred to as data-driven modeling. 

The technical approach of the dissertation consists of three components. First, the technical 

background overview navigates the essential knowledge from related disciplines, including 

thermal-hydraulics models, system simulation, and machine learning. Second, a methodology is 

developed to accomplish data-driven modeling of NSTH. The development includes a system that 

classifies machine learning frameworks for NSTH based on data and knowledge requirements. 

Finally, framework demonstration focuses on the use of deep learning, which has demonstrated 

the capability of a universal approximator. Synthetic examples are formulated to investigate 

technical challenges of using deep learning to achieve data-driven modeling of NSTH. 

Five machine learning frameworks for NSTH have been introduced in the dissertation 

including physics-separated ML (PSML or Type I ML), physics-evaluated ML (PEML or Type II 

ML), physics-integrated ML (PIML or Type III ML), physics-recovered (PRML or Type IV ML), 

and physics-discovered ML (PDML or Type V ML). The framework classification is based on 

knowledge and data requirements. Type III ML framework is formulated for the first time in this 

study. The insights obtained from synthetic examples indicate that Type III ML has the highest 

potential in leveraging the value from “big data” in thermal fluid research while ensuring data-

model consistency. 
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Various numerical experiments are formulated ranging from system-level simulation to 

computational fluid dynamics (CFD) to exhibit the advantage of deep learning (DL) for model 

development. The case studies of system-level simulation using Type I, Type II, and Type III ML 

frameworks ensure that simulation results satisfy conservation laws with a moderate amount of 

data. The results indicate that system-level two-phase mixture models can be solved with DL-

based closure relations without interference of numerical instability.  

The CFD case study exhibits that the DL-based Reynolds stress model can assimilate 

millions of data points to reduce forecast error. Performance of the DL-based stress can be 

quantified by flow features coverage mapping. The results show that Reynolds-averaged 

turbulence modeling with the DL-based Reynolds stress model can replicate the transient flow 

prediction by Reynolds-averaged Navier-Stokes simulation with the k-ε model. 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

Nuclear System Thermal-Hydraulics (NSTH) features multi-scale and multi-physics 

dynamics, involving coupled mass-momentum-energy transport phenomena over multiple scales. 

Conducting simulation for such complex systems requires knowledge from related disciplines, 

including thermal-hydraulics, neutronics, and material science. NSTH simulation is based on 

solving mass-momentum-energy conservation equations (partial differential equations, PDEs) 

with embedded sub-grid-scale physics (SGS) models [1, 2]. SGS models are often referred to as 

“closure relations” (CRs) or constitutive models, as they serve to close PDE-based models ranging 

from large-eddy simulation to system-level simulation. 

Traditionally, it takes extensive efforts to gain insights and develop mechanistic 

understanding of physical processes in reactor systems through analysis of experimental data to 

represent said data in a compact model form. The long time required for model development 

constrains the application of simulation when dealing with newly designed systems including new 

coolants and new geometries. As an alternative to mechanistic and semi-analytical models, some 

machine learning (ML) methodologies can effectively capture underlying correlations behind 

multi-scale data using nonparametric models, or so-called data-driven models. Such approach is 

referred to as data-driven modeling (DDM). 

The goal of this dissertation is to establish a technical basis for novel data-driven model 

development and employ data-driven modeling to maximize the predictive capability of NSTH 

simulation with machine learning. The dissertation research is motivated by the growing interest 

[3] and development of machine learning models in thermal-hydraulics. The trend is powered by 

the advent of data-intensive research methods such as high-fidelity simulations, large-scale GPU 
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(graphic processing unit) computing, and advanced machine learning algorithms, particularly deep 

learning (DL) [4]. 

 

1.2. Applications of nuclear system thermal-hydraulics simulation  

Before establishing data-driven methodology for Nuclear System Thermal-Hydraulics 

(NSTH), it is essential to understand applications and requirements of NSTH simulation. Then we 

can use data-driven modeling to extend the applicability of next generation NSTH codes. NSTH 

simulation [5] involves three applications as follows. 

a) System design. System design requires NSTH simulation platform to include 

extensible models such that researchers can customize simulation layouts to explore 

various reactor designs. 

b) Safety analysis. Safety analysis requires NSTH models to be adaptive for distinct 

scenarios based on two strategic approaches. First, risk assessment is a conservative 

analysis that aims at understanding how severe an accident can be. The priority is to 

bound accidents such that regulators can make laws for nuclear power plant licensing. 

Second, risk management focuses on how to mitigate an accident scenario. The priority 

is to control an accident progression. These two strategies require different model 

assumptions for system analysis. 

c) Operator training. Operator training requires interactive GUI (graphical user 

interface) systems with reconfigurable system modules and growable data libraries. 

Therefore, plant operators can be trained by various accident scenarios. 
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Based on lessons learned [5-8] from present state-of-the-art NSTH codes such as RELAP 

[9], TRACE [10], and MELCOR [11], we classify three functions includes methods from related 

disciplines to develop next generation NSTH code packages as follows. 

a) Model development. Model development requires models to be adaptive and 

extensive. Thus, those models can discover underlying physics behind data and build 

closure relations to close conservation equations. 

b) Hierarchical model repository. Hierarchical model repository allows model selection 

based on flow patterns. For instance, when two phases (liquid and vapor) are tightly 

coupled [8], two-phase mixture models [12] performs better than the two-fluid model 

[1]. When two phases are loosely coupled [8], the two-fluid model is more applicable 

than two-phase mixture models. 

c) Simulation platform. Simulation platform can benefit the development and 

maintenance of NSTH codes. Such platform allows mathematicians to focus on 

verification of numerical solvers. Then physics models can be quickly deployed on a 

platform to achieve cost-effective and reliable simulation. 

 

1.3. Data convergence 

Data-driven modeling requires the use of a substantial amount of data. A fundamental 

assumption for data-driven modeling is that model accuracy can be improved when training 

models with large data. However, the increase of data does not guarantee that models can fully 

capture trends of data. Figure 1.1 [13] qualitatively depicts performance of data-driven models by 

different learning algorithms. Performance refers to the capability of models to capture hidden 

correlations behind data. Traditional learning algorithms are limited by model forms, and their 
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performance is saturated after a threshold. However, traditional ML models can achieve a specified 

fidelity with limited data. Those models are usually developed based on knowledge and they could 

be derived from physics dimensional analysis. When data are limited, traditional machine learning 

models may have more predictive capabilities than deep learning (DL) models, which require a 

substantial amount of data for training. On the contrary, deep learning includes adaptive model 

forms, which can change degrees of freedom based on different amount of data. Therefore, data-

driven models using deep learning can benefit from “big data” in thermal-hydraulics. An 

experiment is formulated in CHAPTER 8 to demonstrate that DL-based closures can assimilate 

millions of data points. 

 

 
Figure 1.1. Comparison of DL to traditional machine learning (adopted after Ng [13]). 

 

1.4. Total data-model integration (TDMI) 

The concept of total data-model integration (TDMI) [14] refers to the integrated use of 

datasets, models, and simulations to support decision making. Research has been pursued in 

formulating and applying the TDMI framework to accomplish data-driven modeling of NSTH, 

particularly leveraging on advances in machine learning techniques. Nowadays, thermal-

hydraulics data accumulate rapidly in a significant amount from high-resolution simulations and 
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experiments, primarily due to the affordability of high-performance computing and advances in 

flow diagnostics, thermal imaging, and other measurement equipment such as high-speed, high-

resolution optical and infrared cameras.  

The value of those high-fidelity data lies with their use (usability) to reduce uncertainty in 

simulation. The “high fidelity” refers to the data which have been adequately evaluated, and hence 

trustworthy. Lewis et al. [15] investigated a strategy of using high-fidelity data from computational 

fluid dynamics (CFD) to inform low-fidelity models in system-level thermal hydraulics 

simulation. They also demonstrated this high-to-low (Hi2Lo) strategy by utilizing a neutron 

transport equation to inform a neutron diffusion equation. Methodologically, TDMI belongs to the 

Hi2Lo strategy. Its distinctive features relax closure relations from their traditional “mechanistic” 

models to ML-based models, which have the potential to extract values of a substantial amount of 

data. 

For the “Big Data” to become useful in TDMI, it has to undergo several processing steps 

[16]. First, results of high-fidelity simulations and experiments need to be collected, categorized, 

and archived in an easily accessible storage format. Second, the value of data as information needs 

to be assessed, to establish their relevance to the conditions and models under consideration, so 

that these data become useful information. Third, data are processed by various methods (including 

ML) to recognize underlying correlations behind the information. The so-developed intelligence 

(e.g., in the form of closure relations) is used to enable thermal fluid simulation in applications.   

Stemming from the preceding discussion, Figure 1.2 depicts the TDMI framework that 

includes the concept of (Data/Method/Platform) “as a Service (aaS)” [17]. The “aaS” notations are 

employed to denote components (modules) of a workflow in a “divide-and-conquer” strategy that 

allows us to decompose the framework by different disciplines. We can define requirements, 
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evaluate methods, and review the essential knowledge in each discipline such as machine learning, 

thermal fluid experiment and simulation, and numerical methods. This concept allows each 

module to be reused, extended, and improved based on newly observed data as well as newly 

developed state-of-the-art methods. 

Knowledge 
representation

Experiments with 
uncertainty

High-fidelity
Simulations with 

uncertainty

Data 
Warehouse

Machine 
Learning

Data 
Preprocessing

Model 
Hierarchy

System Simulation 
Platform

Safety

Design

ApplicationsUpdating

Model SelectionCR FormulationQuality Assurance

DaaS PaaSMaaS

Closure models with 
uncertainty

Training

 
Figure 1.2. Overview of the total data-model integration (TDMI) framework. 

 

The DaaS module integrates data from various sources to support closure developments. 

The MaaS module includes different ML algorithms that can be deployed to infer models from 

data. The PaaS module contains thermal fluid models that are adaptive to various applications. The 

detail functions of each module are described: 

Data as a Service (DaaS). Four types of data need to be stored in the data warehouse 

including the knowledge representation, experiments, high-fidelity simulations, and existing 

closure models. Most importantly, uncertainty information needs to be stored as well. Experts’ 

knowledge needs to be formalized and quantified so that the information can be used to improve 

modeling and simulation. The experiment provides evidence to support the development of closure 

relations. The simulation includes direct numerical simulation (DNS) or validated CFD results to 
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support the model development when the budget or time frame limits full-scale experiments. The 

existing models are compact forms of data from past researches and experiments. They are used 

under appropriate conditions, and often serve as first estimates when new observations and directly 

relevant data are not available. 

Method as a Service (MaaS). The MaaS module is emphasized by red color to indicate 

that ML methods can fill the gap between data and thermal fluid models. Machine learning 

methods are essential for data-driven modeling due to its capability to capture trends of data by 

nonparametric models. However, if the source of data is uncertain, the data-driven model is also 

uncertain. Data preprocessing is required to check the consistency1 between the model and data 

before training a data-driven model. For instance, when we use a 3D (three-dimensional) 

simulation to inform a 1D (one-dimensional) model, we should confirm that the spatiotemporal 

averaging methods for high-resolution data are consistent with the 1D model. After data 

reprocessing, machine learning techniques are applied to accomplish data-driven modeling. 

Eventually, ML-based closure relations are incorporated into system simulation platforms to 

enhance the predictability of simulation for a newly designed system and system with different 

coolants or geometries. 

Platform as a Service (PaaS). Thermal fluid models with distinct hypotheses can be 

adapted based on each particular condition, and hence minimize the uncertainty for simulation. 

Each thermal fluid model requires distinct ML-based closures and may need specific numerical 

schemes for solutions. Therefore, simulation platforms store the thermal-fluid-model hierarchy 

based on different degrees of averaging, and provide numerical solvers that are verified by 

                                                 
1 NSTH simulation involves conservation equations with various degrees of averaging from the first principle 

based on distinct hypotheses. The underlying physics of the conservation equations should be consistent with the 
experiment or simulation where the available, relevant, and adequately evaluated data (ARAED) are obtained. 
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mathematicians. The model selection will become application-oriented, and users can deploy a 

customized system for dynamics analysis by assembling pre-existing components in the model 

repository. For instance, when liquid and vapor phases are tightly coupled, it is hard to distinguish 

interfacial details, and a drift-flux model should be used for this condition [8]. 

 

1.5. Dissertation overview 

1.5.1. Significance and Objectives 

The significance of using data-driven modeling to develop nuclear system thermal-

hydraulics (NSTH) models stems from three beneficial impacts of such use. These, henceforth 

identified with objectives, are: 

a) Shorten the model development phase; 

b) Leverage values of data from advanced validation experiments and high-fidelity 

numerical simulations; 

c) Maximize the predictive capability of NSTH models. 

1.5.2. Technical approach 

The technical approach to achieve data-driven NSTH simulation includes: 

a) Review the essential knowledge from multidisciplinary fields including the thermal-

hydraulics, system simulation, and machine learning; 

b) Developing a methodology to achieve data-driven modeling of nuclear system thermal-

hydraulics. The development includes a system to characterize different approaches to 

use machine learning in NSTH simulation; 

c) Demonstrate through synthetic examples how to employ the developed methodology 

to accomplish data-driven modeling of NSTH. 
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1.5.3. Dissertation structure 

The dissertation is structured into following chapters. 

CHAPTER 2 includes technical background overview. Data-driven modeling of NSTH 

involves methods from multiple disciplines including thermal-hydraulics, system simulation, and 

machine learning.  

CHAPTER 3 focuses on the formulation of machine learning frameworks to accomplish 

data-driven modeling of NSTH. Based on distinct strategies of incorporating machine learning 

(ML) into NSTH, we propose a classification into five frameworks including physics-separated 

ML (PSML or Type I ML), physics-evaluated ML (PEML or Type II ML), physics-integrated ML 

(PIML or Type III ML), physics-recovered (PRML or Type IV ML), and physics-discovered ML 

(PDML or Type V ML). 

CHAPTER 4 demonstrates how to employ Type I ML for system-level single-phase flow 

simulation. The goal is to find the conditions by which DL-based closure relations work 

compatibly, stably, and effectively with PDE-constrained forward prediction problems. The case 

study shows how to employ the physics-constrained deep learning strategy to build DL-based 

closure relations, which are well-posed. 

CHAPTER 5 includes the case study that uses Type I ML to close a two-phase mixture 

model (TMM) [12]. The machine learning strategy developed in Section 3.4.4 is employed to find 

a reliable and robust DL-based slip closure for mixture models. The result indicates that the two-

phase mixture model with the DL-based slip model has predictive capability over a range of flow 

regimes. 

CHAPTER 6 compares performance of Type I, Type II, Type III, and Type V ML 

frameworks using a case study with nonlinear heat conduction. Thermal conductivity models are 
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formulated by convolutional neural networks (CNNs) and feedforward neural networks (FNNs). 

The result indicates a preference for Type II ML under deficient data support. Type III ML can 

effectively utilize field data, generating more robust predictions than Type I, Type II and Type V 

ML. CNN-based models exhibit more predictive capabilities than FNN-based models, but CNN-

based models require more training data to achieve prediction. 

CHAPTER 7 exhibits Type I and Type II ML frameworks applied to Reynolds-averaged 

turbulence modeling using reference works [18, 19].  

CHAPTER 8 demonstrates how to employ Type I and Type II ML frameworks to achieve 

Reynolds-averaged turbulent flow modeling for unsteady flow. The goal is to construct DL-based 

Reynolds stress to close Reynolds-averaged Navier-Stokes (RANS) equations. The case study also 

shows how to use flow features coverage mapping (FFCM) to quantify the coverage of physics. 

FFCM also has the potential to quantify the predictive capability of DL-based RANS simulation. 

The result shows that the DL-based Reynolds stress model that assimilated millions of data points 

can replicate the transient flow prediction by the RANS(k-ε) model. 

CHAPTER 9 provides the conclusions and recommendations for future work about 

applying ML frameworks to NSTH simulation. 

 

1.6. Glossary 

This section provides interpretation of several key terminology used in the dissertation. 

Big data 

Big data refers to a substantial amount of data that cannot readily be interpreted by human 

beings. Big data hierarchy includes four parts. First, results of high-fidelity simulations and 

experiments need to be collected, categorized, and archived in an easily accessible storage format. 

Second, the value of data as information needs to be assessed, to establish their relevance to the 
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conditions and models under consideration, so that these data become useful information. Third, 

data are processed by various methods (including ML) to recognize underlying correlations behind 

the information. The so-developed intelligence (e.g., in the form of closure relations) is used to 

enable thermal fluid simulation in applications. 

Hi2Lo 

Hi2Lo refers to the use of high-fidelity models to inform low-fidelity models. The method 

is proposed by Lewis, Smith, Williams & Figueroa [15]. High-fidelity models can tune model 

parameters that make low-fidelity models capture expected system characteristics. 

High-fidelity model 

High-fidelity models refer to models that have been calibrated by data from various 

sources, and they are valid in a range of flow regimes. Therefore, high-fidelity models are more 

trustworthy, in the sense of having lower uncertainty, than low-fidelity models. 

Methods of manufactured data (MMD) 

The method of manufactured data (MMD) refers to generate data for training and testing 

by high-fidelity models. We can manipulate data quantity and uncertainty to evaluate the 

performance of data-driven models. 

Model calibration 

Model calibration refers to the use of a learning algorithm or human efforts to infer model 

parameters based on data. 

Engineering surrogate construction 

Engineering surrogate construction uses statistical methods to build models for analysis of 

system dynamics that is highly nonlinear. Such a system involves multi-scale and multi-physics 

models, requiring substantial computing power that makes uncertainty quantification unachievable 
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given a limited time frame. Instead of solving complete models, engineering surrogate construction 

preserves the features between inputs and outputs. Therefore, it is possible to run surrogates 

thousands of times that make uncertainty quantification possible. 

Total data-model integration (TDMI) 

Total data-model integration (TDMI) refers to the integrated use of data, models, and 

simulations, including integral effects tests, separate effects tests, multi-scale and multi-physics 

models, and high-fidelity numerical simulations (i.e., DNS, LES, and CFD). TDMI can be used to 

support decision making. The concept is proposed by Dinh, Nourgaliev, Bui & Lee [14].  

Scale separation 

System dynamics usually involves multi-scale and multi-physics models. For instance, 

viscosity is a microscopic property, and it does not depend on flow velocity for a Newtonian fluid. 

We can separately measure this material property, and then use it in conservation equations. 

However, viscosity depends on flow velocity for a non-Newtonian fluid. To obtain the property, 

we need to account for the entire system dynamics. 
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CHAPTER 2. TECHNICAL BACKGROUND OVERVIEW 

2.1. Introduction 

This chapter provides technical background about data-driven modeling (DDM) of nuclear 

system thermal-hydraulics (NSTH) including thermal-hydraulics models, system simulation as 

well as machine learning (ML).  

 

2.2. Thermal-hydraulics models 

2.2.1. Reynolds-averaged Navier-Stokes equations 

Reynolds-averaged Navier-Stokes (RANS) equations are widely used in fluid engineering 

simulation and analysis due to its computational efficiency. The next generation system code is 

expected to be multi-dimensional. Therefore, the dissertation uses RANS models to demonstrate 

that DDM with DL can leverage values from a substantial amount of data. Eq. (2.1) and Eq. (2.2) 

show the Reynolds-averaged continuity and momentum equations [20] without the body force for 

an incompressible Newtonian fluid where 𝑢𝑢� is the time averaged velocity. In Eq. (2.2), D/Dt, ρ, �̅�𝑝, 

�𝜏𝜏�̅�𝑖𝑖𝑖�lam, �𝜏𝜏�̅�𝑖𝑖𝑖�turb are the material derivative, fluid density, mean pressure, laminar shear stress, and 

Reynolds stress tensor.  

 0j

j

u
x

∂
=

∂
 (2.1) 

 
( ) ( )ij iji lam turb

j j j

Du p
Dt x x x

τ τ
ρ

∂ ∂∂
= − + +

∂ ∂ ∂
 (2.2) 

Eq. (2.3) gives the laminar shear stress with Stokes’ hypothesis where μ, δij, and k are the 

molecular viscosity, Kronecker delta, and direction. Eq. (2.4) shows the Reynolds stress where 𝑢𝑢′ 

is the fluctuation velocity.  
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3

i j k
ij ijlam

j i k

u u u
x x x

τ µ δ
  ∂ ∂ ∂

= + −   ∂ ∂ ∂   
 (2.3) 

( )ij i jlam
u uτ ρ ′ ′= −      (2.4) 

The linear eddy viscosity model (LEVM) has been widely used to represent Reynolds stress 

that leads to various mechanistic turbulence models [21] such as Spalart-Allmaras [22], k-ε [23], 

and k-ω [24] models. 

2.2.2. Two-phase flow modeling 

2.2.2.1. 1D area-averaged two-fluid model 

The two-fluid model (TFM) [1] includes the mass-momentum-energy conservation 

equation for two phases with two fields. Eq. (2.5) and Eq. (2.6) show mass balance equations for 

liquid (l) and vapor (g) where '
iδ  is the interfacial mass transfer rate.  

 'l l l l l x
x i

v AA
t z

α ρ α ρ δ∂ ∂
+ = −

∂ ∂
           (2.5) 

'g g g g g x
x i

v A
A

t z
α ρ α ρ

δ
∂ ∂

+ =
∂ ∂

              (2.6) 

Eq. (2.7) and Eq. (2.8) give momentum balance equations for each phase where îv  and iP  

are the interfacial velocity and perimeter. 

' ˆl l l l l l l x
x i i l x wl wl i i l l z x

v v v A PA v A P P g A
t z z

α ρ α ρ δ α τ τ α ρ∂ ∂ ∂
+ = − − − + +

∂ ∂ ∂
   (2.7) 

' ˆg g g g g g g x
x i i g x wg wg i i g g z x

v v v A PA v A P P g A
t z z

α ρ α ρ
δ α τ τ α ρ

∂ ∂ ∂
+ = − − − +

∂ ∂ ∂
    (2.8) 
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Eq. (2.9) and Eq. (2.10) show internal energy balance equations for each phase. When the 

liquid is vaporizing, ℎ�𝑙𝑙 and ℎ�𝑔𝑔 are the liquid enthalpy and saturated vapor enthalpy. If the vapor is 

condensing, ℎ�𝑙𝑙  and ℎ�𝑔𝑔 are the saturated liquid enthalpy and vapor enthalpy. 

' " "ˆl l l l l l l x l l x l x
x i l wl wl il i

u u v A v A AA h P P q P q P
t z z t

α ρ α ρ α αδ∂ ∂ ∂ ∂
+ + = − − + +

∂ ∂ ∂ ∂
  (2.9) 

' " "ˆg g g g g g g x g g x g x
x l g wg wg ig i

u u v A v A A
A h P P q P q P

t z z t
α ρ α ρ α α

δ
∂ ∂ ∂ ∂

+ − = − − + +
∂ ∂ ∂ ∂

            (2.10) 

2.2.2.2. 1D area-averaged two-phase mixture model 

The two fluid model resolves detail information for each phase, but it may suffer from 

significant uncertainty due to model form uncertainty of interfacial transfer correlations. As an 

alternative, a two-phase mixture model (TMM) [12] reduces the number of closure relations and 

TMM is capable to handle phase appearance and disappearance without any singular point. 

Eq.(2.11)-(2.15) give the mass-momentum-energy conservation equation for the three-equation 

TMM where M2Φ and E2Φ are two-phase correction terms for momentum and internal energy 

balance equations. The three-equation TMM is the fundamental mixture model, and Eq. (2.16) 

defines the mixture property where ϕ can be 1, v, u, or υ. When single-phase flow is present, M2Φ 

and E2Φ are equal to zero and the three-equation TMM becomes the single-phase flow model. 

 0x
x

vAA
t z

ρρ ∂∂
+ =

∂ ∂
 (2.11)  

 2
x

x x w w z x
vvAv PA A P g A M

t z z
ρρ τ ρ Φ
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∂ ∂ ∂
  (2.12)  
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 2 ( )( ) ( )( )g g l l g g l l
g l g l x g l g l xE u u v v A P v v A

z z
α ρ α ρ α ρ α ρ

υ υ
ρ ρΦ

   ∂ ∂
= − − + − −   ∂ ∂   

  (2.15) 

l l l g g gρφ α ρ φ α ρ φ= +       (2.16) 

The simplest three-equation TMM is the homogeneous equilibrium model that requires 

assumptions of the equal velocity, temperature, and pressure for each phase. This model also 

assumes the liquid and vapor are at saturation. However, the homogeneous (equal phasic 

velocities) assumption is not valid for a vertical pipe problem because of buoyancy. We can add a 

slip (vg/vl) closure to capture the effect of buoyancy, and there are more discussions on how to 

select a slip closure for two-phase mixture models in Section 2.2.2.3. In the meanwhile, we need 

drift-flux-based void fraction models to close the three-equation TMM such as the Zuber-Findlay 

correlation [25]. 

TMMs can consistently increase the fidelity of prediction for different flow patterns by 

increasing phasic equations. Figure 2.1 [5] summarizes family of TMMs based on various 

assumptions. For example, the three-equation TMM is not valid when system includes a subcooled 

liquid. We can add Eq. (2.5) (phasic mass equation) to the three-equation TMM to extend its 

applicability. The new four-equation TMM requires the closure of interfacial mass transfer details. 

The five-equation TMM can be formulated in two diverse ways by either the phasic mass-

momentum or mass-energy equation. The five-equation TMM with the phasic mass-momentum 

equation assumes that the vapor is at saturation. Therefore, we cannot model the system with both 

subcooled liquid and superheated vapor. The error made by this assumption is not significant 

because the superheated vapor is quickly cooled by subcooled liquid. On the contrary, the five-

equation TMM with the phasic mass-energy equation does not require the assumption of 

saturation; instead, it requires closures to resolve the relative phasic velocity. 
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The required closure relations are inceased as we adds euqations in TMMs. The five-

equation TMM can model non-homogeneous non-equilibrium flow. However, if uncertainty is 

induced by closure relations, the three-equation model may perform well since it only requires 

limited closure models.  

 

 
Figure 2.1. Family of two-phase mixture models (adopted after Wulff [5]). 

 

2.2.2.3. Void fraction closures for two-phase mixture models 

A void fraction (α) closure model is essential for two-phase mixture models. Void fraction 

can determine two-phase characteristics such as the mixture density and slip velocity. 

Traditionally, there are two approaches to obtain void fraction models: analytical and empirical 

derivations. Both methods result in numerous models for each flow regime, and the use of multiple 

models results in several issues such as discontinuities for flow regime transitions and model form 

uncertainty. In the meanwhile, it usually requires extensive efforts to gain the insights and 
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mechanistic understanding to develop a void fraction closure. The long time required for new 

model development limits the applicability of two-phase mixture models while dealing with newly 

designed systems, including new geometries and new coolants. We review the traditional approach 

for the development of void fraction models in this section. 

The cross-section void fraction is widely used in two-phase mixture models. It can be 

obtained by mean liquid (l) and vapor (g) velocities as given in Eq. (2.17) and Eq. (2.18) where G, 

ρ, and x are the total mass flux, density, and steam quality.  

 
(1 )

l
l l

x Gv
α ρ
−

=   (2.17) 

 g
g g

xGv
α ρ

=   (2.18) 

We can divide Eq. (2.18) by Eq. (2.17), and define the slip factor (S = vg/vl) to obtain the 

void-quality-slip model:  

 
1

11 g

l

x S
x

ρ
α

ρ

−
 −

= + 
 

 (2.19) 

For a homogeneous flow, the slip is equal to one since the liquid and vapor have the same 

velocity. Most of TMMs require closure relations to resolve the slip factor, for example, three-

equation and four-equation two-phase mixture models. Traditionally, there are two approaches to 

obtain the slip. 

The analytical approach includes momentum flux (ΦM) and kinetic energy models. Eq. 

(2.20) shows the momentum flux [26] for separated flows. 

 
2 2

2 (1 )
1

g l
M

x v x vm
α α

 −
Φ = + 

−  
  (2.20) 
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We assume that void fraction can be obtained by the minimum momentum flux. Therefore, 

we can take the derivative of Eq. (2.20) with respect to α, and then compare the result with Eq. 

(2.19) to obtain the slip factor as follows. 

 
1/2

l

g

S ρ
ρ

 
=   
 

 (2.21) 

For the annular flow, Zivi [27] derived the kinetic energy equation by Eq. (2.22) and 

assumed void fraction can be obtained by the minimum kinetic energy. Therefore, we can take the 

derivative of Eq. (2.22) with respect to α, and then compare the result with Eq. (2.19) to obtain the 

slip factor by (2.23). 

 
2 2 2 2

2 2 2 2

(1 )1 1 (1 )
2 2 (1 )

x x
g l

g g l l

mxA m x Am x m xKE ρ ρ
α ρ ρ α ρ ρ

−−
= +

−
    (2.22) 

 
1/3

l

g

S ρ
ρ

 
=   
 

 (2.23) 

Table 2.1 summarizes selected analytical void fraction models where e denotes the 

entrainment fraction (droplet mass flow rate divided by total liquid mass flow rate).  

 

Table 2.1. Summary of selected analytical void fraction models. 
Model Correlation Condition 
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Empirical slip models can be obtained by experimental data. Smith [28] proposed a slip 

model by Eq. (2.24) for the separated flow by assuming identical momentum fluxes in each phase.  

 

1/2
1

(1 )
11

l

g

xe
x

S e e
xe

x

ρ
ρ

 − +     = + −
 −  +     

 (2.24) 

Chisholm [29] determined the slip factor for annular flow by Eq. (2.25); this model 

satisfied thermodynamic limits. As the steam quality approaches zero, only tiny bubbles exist in 

the system. We can assume the bubbles and liquids move together since the buoyancy is negligible. 

Therefore, the slip factor is one. When the steam quality is equal to 1, the Chisholm model agrees 

with the analytical slip model Eq. (2.21). Table 2.2 summarizes void fraction models by empirical 

slip factors. 

 
1/2

1 1 l

g

S x ρ
ρ

  
= − −      

 (2.25) 

Table 2.2. Summary of void fraction models using empirical slip factors. 
Model Correlation Condition 

Smith [26, 28] 
10.580.7811 0.79 g
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Zuber and Findlay [25] derived the void fraction based on the drift-flux model given by 

Eq. (2.26) where vgj and C0 are the drift velocity and distribution parameter. This expression 

correlates the void fraction as the function of the mass flux while the analytical void fraction model 

does not include this effect. Furthermore, the distribution parameter allows the Zuber-Findlay (ZF) 

model to account for the effect of non-uniform flow distributions. This parameter (C0) [1] needs 
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to be adjusted for different system characteristics such as the pressure, geometry, and mass flow 

rate. 

 
1

0
11 g g gj

l

vxC
x xG

ρ ρ
α

ρ

−
  −

= + +  
   

 (2.26) 

Ishii [30] showed that the drift-flux model can be used independently to flow regimes. 

However, the model should be applied only when the drift velocity is significantly larger than the 

sum of the superficial velocities of the liquid and vapor [26]. Table 2.3 lists the selected drift-flux 

models where di, Pr, and σ denote the inner diameter, the reduced pressure, and surface tension.  

 

Table 2.3. Summary of the selected drift flux models for different flow regimes. 
Model Correlation Condition 
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Through the tables in this section, there are lots of correlations for void fraction models in 

each flow regime, and model form uncertainty becomes a critical issue. However, it is difficult to 



www.manaraa.com

 

 22 

quantify the source of errors when system includes flow regime transition. This difficulty arouses 

the interest in DDM because DDM have the potential to build models from total data that are valid 

for a range of flow regimes. 

 

2.3. System simulation 

This section introduces system codes which can be used to generate training data for data-

driven modeling framework demonstrations. Simulation platforms are also introduced, and they 

can be used for demonstrations of data-driven NSTH models. 

2.3.1. TRACE 

The TRAC/RELAP Advanced Computational Engine (TRACE) is the USNRC state-of-

the-art system code that aims at analyzing large/small break LOCAs (Loss-of-Coolant Accidents) 

and anticipated transients for light water reactors. It inherits and enhances the features of three 

codes: TRAC-P (Transient Reactor Analysis Code for PWR), TRAC-B (Transient Reactor 

Analysis Code for BWR), and RELAP (Reactor Excursion and Leak Analysis Program). The two-

phase modeling is based on the system-level two-fluid model [1] that requires closure relations to 

catch the sub-grid-scale physics such as drag forces, heat transfers, and interfacial mass/energy 

transfers. TRACE is used to manufacture training data for demonstrations of the data-driven 

modeling framework. 

2.3.2. Dymola 

Dymola [33] is the system modeling and simulation environment using the Modelica 

programming language [34]. The goal of Dymola is to separate physical models and numerical 

solvers so that people from diverse backgrounds can tightly collaborate with each other. The 
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physicists can focus on model development while mathematicians can work on verification of 

numerical solvers.  

Modelica is an equation-based, object-oriented, and multi-physics programming language 

for complex systems such as power, hydraulic, control, mechanical, and thermal systems. The 

modeling language has been widely used in the automobile industries [35] as well as in the aircraft 

system designs [36]. In nuclear engineering, Souyri [37] implemented an EDF (Electricité de 

France) 1300 MW PWR for system dynamics analysis. Modelica includes four features as follows. 

• The equation-based feature ensures acausal coding that provides flexible and reusable 

models because the equations do not relate to the direction of data flow. 

• The multi-physics modeling capability allows different physical objects to be tightly 

coupled such as models of control, power, thermodynamic, and mechanical systems. 

• Modelica is nonproprietary and object-orientated language. When system includes multiple 

models, the Modelica compiler can remove redundant equations and rearrange the solution 

matrix for numerical solvers. Figure 2.2 shows the model translation process inside 

Dymola. 

• The models are highly modularized and easy to maintain so that the programming language 

is suitable for constructing the architecture of complex physical system. 

 

 

 

 

Figure 2.2. Modelica translation process. 

Modelica Source Code 

Translator, Analyzer, and Optimizer 

C Code Generator and Compile 

Simulation 
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2.3.3. OpenFOAM 

OpenFOAM [38, 39] stands for open source field operation and manipulation. It includes 

various numerical solvers written in C++, and it has been widely used for CFD simulation. The 

code package is nonproprietary and allows users to customize solvers for a specific application. 

Therefore, we implement data-driven NSTH models in OpenFOAM solvers to evaluate 

performance of the proposed machine learning frameworks in the dissertation. 

 

2.4. Machine learning for DDM of NSTH 

This section provides the review of thermal fluid data which can be used to train machine 

learning models. Machine learning methods are also reviewed to determine the optimal algorithm 

for the development of data-driven NSTH models. 

2.4.1. Thermal fluid data 

Figure 2.3 provides an overall characterization of thermal fluid data [40] by data type, data 

source, and data quality. The global data are system conditions and integrated variables such as 

system pressure, mass flow rate, pressure drop, and total heat input. The local data are time series 

data at specific locations. The field data are measurements of field variables resolved in space and 

in time. Traditionally, experiments are a primary source of data, including so-called integral effect 

tests (IETs) and separate effect tests (SETs). As the name suggests, SETs and IETs are designed 

to investigate isolated phenomena and complex (tightly coupled) phenomena, respectively. 

Increasingly, appropriately validated numerical simulations become a credible source of data. This 

includes high-fidelity numerical simulations (e.g., DNS, and other CFD methods), as well as 

system-level simulation using computer models in parameter domains that are extensively 

calibrated and validated. It is noted that datasets vary by their quality regarding the quantity and 
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uncertainty. The amount of data affects the performance of inverse modeling since sufficient data 

can reduce the model parameter uncertainty in the domain of interest. Within a narrow context of 

ML for thermal fluid simulation, the data quality can be characterized by the amount of relevant 

and adequately evaluated data (i.e., data quantity) and associated uncertainty (including 

measurement uncertainty and other biases, e.g., scaling, processing). 

 

Thermal Fluid Data

Type QualitySource

Global 
data

Local 
data

Field 
data

Experiment Simulation Quantity Uncertainty

IET SET  
Figure 2.3. Hierarchy of thermal fluid data. 

 

2.4.2. Machine learning (ML) 

Machine learning (ML) can be used to develop closure models by learning from the 

available, relevant, and adequately evaluated data2 (ARAED) with nonparametric models. While 

the concept of ML is not new, the past decade has witnessed a significant growth of capability and 

interest in machine learning thank to advances in algorithms, computing power, affordable 

memory, and abundance of data. There is a wide range of applications of machine learning in 

different areas of engineering practice. In a narrow context of the present study, machine learning 

is defined as the capability to create effective surrogates from a substantial amount of data obtained 

from measurements and simulations.  

                                                 
2 In this study, assumption is made that the data required for ML are available, and their relevance and 

applicability has been assessed. 
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Figure 2.4 depicts a workflow of thermal fluid closure development using ML. The 

objective is to construct a function to represent the unknown model that correlates inputs and 

targets. Since supervised learning [41] is interested, inputs and targets are essential that can be 

obtained from data. The X denotes the flow feature space as inputs. The Y presents the response 

space as targets that are associated with flow features. The subscript k denotes the kth measurement 

at a certain location. After collecting all relevant datasets, machine learning models (ML) are 

generalized by a set of nonlinear functions with hyperparameters to represent a thermal fluid 

closure. Based on different machine learning methods, various algorithms are employed to seek 

an optimal solution that allows a ML-based model to fit the observed data. Based on distinct 

learning purposes, Domingos [42] classified machine learning methods into five tribes including 

symbolists, evolutionaries, analogizers, connectionists, and Bayesians. Table 2.4 lists the five 

tribes in ML with their learning algorithm and challenges. Ling & Templeton [43] evaluated the 

predictability of various machine learning algorithms for predicting the averaged Navier-Stoke 

uncertainty in a high Reynolds region. 

 

ARAED (inputs)
X = {x1,…,xn}, k=1,2,…,n

Machine
Learning

ML-based thermal fluid closures
ML(X) ≈ Y 

ARAED (targets)
Y = {y1,…,yn}, k=1,2,…,n

 

Figure 2.4. Workflow of thermal fluid closure development using machine learning. 
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Table 2.4. Summary of five tribes in ML and their master algorithm with applications [42]. 
Tribe Problem Master Algorithm 

Symbolists Knowledge Composition Inverse Deduction 
Evolutionaries Structure Discovery Genetic Programming 
Analogizers Similarity Support Vector Machine 
Connectionists Credit Assignment Backpropagation 
Bayesians Uncertainty Probabilistic Inference 

 

Deep learning (or deep neural networks) belongs to the connectionists tribe in Table 2.4. 

Deep neural networks can use nonparametric models to capture any measurable information [44]. 

Therefore, the dissertation focuses on using deep learning to develop data-driven NSTH models 

because deep learning provides flexible model structures that are not limited to specific model 

forms. 

2.4.3. Deep Learning (DL) 

Deep learning (DL) belongs to a branch of machine learning. A breakthrough has been 

made since Hinton [45] first introduced a fast algorithm to train neural networks (NNs) with 

multilayer perceptrons. In general, any NN with more than two layers is referred to as deep learning 

[46]. Deep neural networks contain numerous hyperparameters and adaptive model forms to 

achieve pattern recognition or regression for complex datasets. Hornik [44] showed that multilayer 

NNs are compatible with the universal approximation theorem. There is no theoretical limit for 

multilayer NNs to capture the properties of any measurable information. Notably, hierarchical 

structures of deep learning deem appropriate for describing complex models that involve multiple 

scales. 

Deep neural networks include lots of variations such as feedforward neural networks 

(FNNs) [44], convolutional neural networks (CNNs) [47], recurrent neural networks (RNNs) [48], 

self-organizing map [49], and Boltzmann machine [50]. Table 2.5 summarizes the type of each 

neural network and their relevant problem domains [46]. Table 2.6 defines the acronyms. The 
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present work focuses on applying FNNs and CNNs to achieve data-driven modeling because 

building models from data belongs to regression problems. 

 

Table 2.5. Neural networks and its applicable problem domains (adopted after Heaton [46]). 
 Clust Regis Classif Predict Robot Vision Optim 

Feedforward        
Convolutional Network        
Recurrent Network        
Self-organizing Map        
Boltzmann Machine        

 

Table 2.6. Acronyms of the problem domains in Table 2.5. 
Acronyms Meaning 

Clust Unsupervised clustering problems 
Regis Regression problems 
Classif Classification problems 
Predict Prediction problems 
Robot Robotics, using sensors and motor control 
Vision Computer vision problems 
Optim Optimization problems 

 

2.4.3.1. Feedforward neural networks 

Feedforward neural networks (FNNs) belong to supervised learning, and they require 

inputs and targets from data during the training. Figure 2.5 depicts a structure of a typical three-

layer FNN with one input layer, two hidden layers (HLs), one output layer, and three hidden units 

(HUs) in each hidden layer. Data flow goes straight from the input layer to the output layer. Neural 

networks can take arbitrary inputs and outputs and build a correlation based on data. The layer of 

neural networks is counted by the summation of numbers of hidden layers and the output layer. 

For instance, Figure 2.5 shows a structure of a three-layer neural networks. 
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Input   
Layer

Hidden Units (Neurons)  
Figure 2.5. A three-layer neural network. 

 

Eq. (2.27)-Eq. (2.29) show the mathematic formulation of feedforward neural networks. 

Eq. (2.27) gives the input vector (x) with total elements equal to n. Eq. (2.28) shows the model 

inside HU where i and j are the ith number of inputs, and jth number of hidden units. Furthermore, 

we denote weights and biases by w and b for each hidden unit and use σ to represent nonlinear 

activation functions. Finally, Eq. (2.29) gives the output (ŷ) of neural networks where m denotes 

the mth output layer (o). 

 1 2[ , , , ]nx x x=x    (2.27) 

 
1

( ) ( )
n

j ji i j
i

HU w x bσ
=

= +∑x   (2.28) 

 
1

ˆ( )
m

oji i o
i

y w HU b
=

= +∑HU   (2.29) 

Eq. (2.30) defines a loss function (Euclidean loss) that can be used to optimize parameters 

of neural networks. For regression problems, the L2 squared norm (or the so-called Euclidean loss) 

is commonly used. In Eq. (2.30), N and y are the total data and training target.  
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i i
i

L y y
N =

= −∑   (2.30) 

Overfitting is a critical issue that models fit training datasets well, but they show no 

predictability. To prevent overfitting, we can define a loss function using L2 regularization by Eq. 

(2.31) with the regularization strength (λ), weights (wi), and total weights (W). The goal of training 

is to find values of w such that the model is consistent with data. 

 * 2

12

W

i
i

L L wλ
=

= + ∑  (2.31)  

2.4.3.2. Convolutional neural networks 

Convolutional neural networks (CNNs) [47] include convolutional layers to reduce model 

parameters, and they are efficient in training. The activation function, rectified linear unit (ReLU) 

[51], can accelerate the training of CNNs. The input is a matrix, and the output can be either a 

matrix or one-hot vector [52]. Figure 2.6 depicts an architecture of CNNs. The model includes 

three convolutional layers and three fully connected layers. The input and output are both field 

data. After the first convolutional layer, eight feature maps are generated, and each feature map 

detects the patterns from the temperature field data. The second convolutional layer takes the 

inputs from the previous layer, and it outputs 12 feature maps. The third convolutional layer 

receives the inputs from the previous layer, and it delivers 24 feature maps to the fully connected 

layer. After fully connected layers, we can obtain the output from CNNs. 

 
Figure 2.6. Architecture of CNN-based conductivity model (adopted after LeCun) [47]. 

Input layer
(Temperature field 

with 41x41 mesh points)

Output
(Conductivity field 

with 41x41 mesh points)

1st Convolution layer
with 8 feature maps 
and 41x41 mesh points

2nd Convolution layer 
with 12 feature maps 
and 21x21 mesh points

3rd Convolution layer
with 24 feature maps 
and 11x11 mesh points

Fully connected layers
(2 hidden layers and 1 output layers)



www.manaraa.com

 

 31 

2.4.3.3. Activation functions for neural networks 

Activation functions are non-linear regression functions inside hidden units. Table 2.7 

gives activation factions that are widely used. 

 
Table 2.7. Common activation functions in a neural network. 

Activation Function Formula 

Sigmoid  ( ) 1
( ) 1 xf x e

−−= +   

Hyperbolic Tangent (Tanh) ( )( ) 2 2 1f x sigmoid x= ⋅ −  

Rectified Liner Unit (ReLU) ( )( ) max 0,f x x=  
 

The sigmoid non-linearity can constrain outputs to return values between zero and one. Eq. 

(2.32) gives the derivative of the sigmoidal function (σ), and the derivative is easy for 

implementation. 

 [ ]( ) 1 ( )d x x
dx
σ σ σ= −   (2.32) 

Figure 2.7(a) depicts the plot for the sigmoid non-linearity. Both functions saturate at tails, 

and this property can cause the gradient vanishing issue when training neural networks. When the 

gradient is equal to zero, weights and biases cannot be updated. Therefore, parameter initialization 

needs to be careful while using the sigmoidal activation. 

 

 
(a)                                                                           (b) 

Figure 2.7. Non-linearity of (a) the sigmoid, and (b) tanh. 
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Another drawback of the sigmoidal function is that outputs are not zero-centered [53], 

which may result in zig-zagging dynamics for calculation of weights and biases during training. 

The hyperbolic tangent function (σ) can constrain outputs to return values between negative 

and positive one. It is also easy to implement into the learning algorithm because its derivative can 

be represented by itself as given in Eq. (2.33). It also has the issue of saturation as the sigmoid 

non-linearity shown in Figure 2.7(b). However, the hyperbolic tangent function is easier to train 

than the training of the sigmoidal function because the gradient of tanh is larger than the sigmoid 

as depicted by Figure 2.8. In the meanwhile, the output of tanh is zero-centered. Therefore, the 

activation function, tanh, is preferred over the sigmoid. 

 
21 ( )d x

dx
σ σ= −   (2.33) 

 
Figure 2.8. The comparison of derivatives of the tanh and sigmoid. 

 

The rectified linear unit (ReLU) [54] has become popular because it helps learning 

algorithms to converge faster than the previous two activation functions [55]. It can avoid the 
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gradients are negative. When the learning rate of learning algorithms is inappropriate (too high), 

hidden units may not activate during the training [53]. 

2.4.3.4. Backpropagation algorithm 

The backpropagation algorithm [56] can be used to find weights and biases for neural 

networks. Figure 2.9 depicts a simple neural network for explanation of the backpropagation 

algorithm where σ and o denote the sigmoidal function and outputs of each hidden layer. We use 

s1 and s2 to present the inputs of the first and second hidden layers respectively. Finally, the model 

output (ŷi) can be expressed by w3o2. Eq. (2.34) gives the loss function of the neural network in 

Figure 2.9 where yi denotes the training data.  

xi σ(w1xi) σ(w2o1) w3o2 ŷi 
o1 o2 o3

Hidden 
Layer 1

Hidden 
Layer 2

Output 
Layer

Input   
Layer

 
Figure 2.9. The three-layer NN with single HU in each layer. 
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Eq. (2.35) calculates the derivative of Eq. (2.34) that propagates the error (𝑦𝑦� − 𝑦𝑦) to the 

output layer. 

 ( ){ } ( ) ( )3 2 1 2 1 2
3

ˆi i i i i
L w w w x y w w x y y o
w

σ σ σ σ∂
   = − = −   ∂

  (2.35) 

By using the chain rule, Eq. (2.36) shows how we can propagate the error to the second 

hidden layer. Eq. (2.37) shows the error propagation to the first hidden layer. After we obtain the 

error for each hidden layer, the stochastic gradient decent (SGD) [57] method is commonly used 
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to update the weights. Eq. (2.38) gives the formula for SGD where η is the step size or learning 

rate in machine learning. 

( ) ( ) ( ) ( )3 2 2
3 2 1 2 1 1

2 3 2 2 2

ˆ 1i i i
o o sL L y y w w o w o w x

w o o s w
σ σ σ∂ ∂ ∂∂ ∂

 = = − − ∂ ∂ ∂ ∂ ∂
  (2.36) 

( ) ( ) ( ) ( ) ( )3 2 2 1 1
3 2 1 2 1 2 1 1

1 3 2 2 1 1 1

ˆ 1 1i i i i i
o o s o sL L y y w w o w o w w x w x x

w o o s o s w
σ σ σ σ

∂ ∂ ∂ ∂ ∂∂ ∂
   = = − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂
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∂
     (2.38) 

2.4.3.5. Uncertainty quantification for DL 

“Remember that all models are wrong; the practical question is how wrong do they have 

to be to not be useful,” George E.P. Box, page 74 of [58]. 

The goal of uncertainty quantification is to evaluate and minimize uncertainties associated 

with experiments and models. Since models usually include assumptions, reality may not be fully 

represented by models. Therefore, it is important to know how uncertain models are, so we can 

have confidence to apply models to predict quantities of interest. Most importantly, we are 

interested in understanding how the uncertainty propagates through models in system simulation 

and how it affects the modeling results. The sources of uncertainty can be classified in to four 

categories as follows. 

Data uncertainty. It can be caused by noisy data and measurement errors that are not 

directly related to models. 

Model parameter uncertainty. Models usually include tunable parameters to fit data. 

However, for deep learning models, the model parameters are weights and biases that are 

determined by optimizers based on data. 
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Model form uncertainty. Inferring models from data is an inverse process. Solutions can 

be infinite and result in lots of different model forms. 

Numerical uncertainty. When we run computer simulations, we solve partial differential 

equations (PDEs) in discretized forms. The selection of mesh sizes can affect the accuracy of 

results, and an optimal mesh size is problem-dependent. Roundoff error is another source of 

uncertainty for numerical simulation. In the meanwhile, some deep learning frameworks calculate 

the gradient numerically, and some frameworks compute the gradient analytically. The difference 

in calculating gradient can induce uncertainty for deep learning models. 

The model parameter uncertainty and model form uncertainty of deep learning can be 

considered together as model uncertainty which can be estimated by neural networks with dropout 

[59]. Dropout [59] is the stochastic regularization technique that was originally used to avoid over-

fitting in deep learning. Recent research [60] proves that neural networks with dropout are 

Bayesian neural networks. 

2.4.3.6. Comparison of deep learning frameworks 

There are lots of deep learning frameworks with different programming languages on the 

market. All major deep learning frameworks run on GPU to leverage computing power. We review 

the following deep learning frameworks and select a tool to implement data-driven NSTH models 

in this study. 

Tensorflow 

Tensorflow [57] is maintained by Google, and it can run on heterogeneous systems ranging 

from single GPU to multiple GPUs. It provides a wide variety of algorithms to train deep neural 

networks, and it is widely used in the fields of natural language processing and computational drug 

discovery. Tensorflow also allows users to define functions in tensor forms that support indexing, 
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slicing, cloning, and resizing, and then Tensorflow automatically computes the derivatives of those 

functions. Therefore, users can deploy customized models including PDEs. It provides Python and 

C++ APIs that allow users to connect deep learning models with existing statistical or scientific 

libraries. Tensorflow also contains a graphic system to visualize the source tree of deep learning 

models. 

Theano 

Theano [61] is an academic project, and Tensorflow is inspired by this project. The Theano 

framework includes wide varieties of algorithms to train deep neural networks, and it can do tensor 

calculations. The main difference between Theano and other tools is that Theano computes the 

analytical solutions of derivatives. Theano is expected to construct accurate models based on this 

feature. 

Torch 

Torch [62] is initially developed at New York University, and it supports tensor 

computation. Torch includes machine learning libraries, and it uses a programming language, Lua 

[63], with underlying C implementation. Facebook AI Research [64] maintains a deep learning 

module for Torch. 

Caffe 

Caffe [65] is a deep learning framework which is developed at Berkeley Vision and 

Learning Center, and it is recognized for offering “Model Zoo” that is a repository including pre-

trained deep neural networks. This feature makes it attractive to industries, especially for computer 

vision companies. Caffe provides configuration files to allow users to assemble the existing models 

for specific applications. 

Microsoft Cognitive Toolkit (MCT) 
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Microsoft Cognitive Toolkit (MCT) [66] is the deep learning framework from Microsoft, 

previously known as Computational Network Toolkit. The goal of MCT is to provide a fast and 

easy configurable machine learning system for developers to write less code. Therefore, MCT 

provides configuration files for users to assemble ML models. It is possible to embed MCT into a 

python or C++ code to enable the deep learning capability. 

The above deep learning frameworks can be classified into two categories: configuration 

file and programmatic generation. Frameworks, which belong to the configuration file category, 

only allow users to specify a configuration file to use deep neural networks. Therefore, those tools 

are not preferable in this work since we require the capability of programming customized models. 

On the other hand, deep learning frameworks in programmatic generation category let users 

implement models, and then those tools provide necessary algorithms to train deep neural 

networks. With this feature, we can implement data-driven NSTH models. Table 2.8 summarizes 

deep learning frameworks into two categories. We decided to work with Tensorflow because it 

provides Python and C++ APIs that are flexible for code coupling. 

 

Table 2.8. Two categories of deep learning packages. 
Configuration File Programmatic Generation 

Caffe 
MCT 

Tensorflow 
Theano 
Torch 

 

2.5. Contemporary works of using ML methodologies in thermal fluid simulation 

Insofar, based on a best-effort review of the literature, contemporary work can be grouped 

into two distinct strategies for employing machine learning in the field of NSTH simulation, 

namely in algorithm implementation and physics identification. The first approach assumes the 

physics of fluids is known and applies machine learning to improve solution performance. For 
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example, Tompson et al. [67] utilized convolutional neural networks (CNNs) to accelerate 

Eulerian fluid simulations. Ladický et al. [68] applied regression forests to accelerate smoothed 

particle hydrodynamics simulations. The other strategy employs machine learning methodologies 

to a body of data to capture underlying correlations including recognizing governing equations. 

Brunton, Proctor & Kutz [69] utilized sparse regression with time-series data to recover the Navier-

Stokes equations. Not in the thermal fluid domain, but of relevance is the work of Mills, Spanner 

& Tamblyn [70]. They showed that CNNs with millions of training data recovered the effective 

form of the Schrödinger equation. 

Aside from extracting governing equations from data, ML has been applied to construct 

surrogates of closure relations. Limited work in this direction relies on supervised learning with 

the training data from either DNS or large eddy simulation (LES). The applications include both 

single-phase and two-phase flow problems. Ma, Lu & Tryggvason [71-73] utilized artificial neural 

networks (ANNs) to obtain closures for stream stress and surface tension force. They implemented 

ANN-based closures in a two-fluid model for simulation of isothermal bubbly flow in a vertical 

box channel. 

Parish & Duraisamy [74] proposed the field inversion and machine learning framework 

that used a Gaussian process to assimilate data. They demonstrated that source terms of the heat 

conduction equation could be inferred from data to reconstruct spatial temperature profiles. The 

FIML was also applied to the k-ω turbulence model [24] for assimilating DNS data to reduce 

model form errors. The modified turbulence model was used to improve Reynolds-averaged 

Navier-Stokes (RANS) equations for simulating a single-phase planar channel flow. In a more 

recent work, Zhang & Duraisamy [18] replaced Gaussian functions by feedforward neural 

networks (FNNs) to enable spatiotemporal modifications. Tracy, Duraisamy & Alonso [75] 

http://dl.acm.org/author_page.cfm?id=81416608156&coll=DL&dl=ACM&trk=0&cfid=986117710&cftoken=43677441


www.manaraa.com

 

 39 

utilized an FNN-based closure to learn the results from the Spalart–Allmaras [21] turbulence 

model. 

Wu et al. [76] and Wang et al. [77, 78] used random forest regression to build a discrepancy 

field of Reynold stress between DNS and RANS simulation results. Then they used a modified 

Reynolds stress field to improve the prediction of the RANS model for test flows. Ling, Kurzawski 

& Templeton [19] trained Reynolds stress closures by tensor basis deep neural networks with DNS 

and LES data. The inputs of deep neural networks were the mean strain and rotation rate tensors 

obtained from RANS simulation using eddy viscosity models. The results indicated that deep 

neural networks improved RANS simulation for flows in different geometries with various 

Reynolds numbers. 

The current reference works demonstrate several ways to implement ML-based models in 

conservation equations. However, those works do not discuss the implementation from 

perspectives of thermal fluid data that include data type, data source, and data quality. Assumptions 

behind experiments affect the selection of appropriate frameworks. This work includes a 

classification system that provides a comprehensive overview of using machine learning to 

maximize predictive capabilities of NSTH simulation. Such a classification system allows machine 

learning frameworks to become transparent regarding assumptions, workflows, and knowledge 

and data requirements. Machine learning frameworks are solution algorithms to achieve data-

driven modeling of NSTH. With a classification system, we can select appropriate frameworks 

based on the available data and knowledge. 
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2.6. Summary 

In this chapter, we reviewed the essential elements of the data-driven modeling framework 

including thermal-hydraulics models, simulation platforms, and machine learning, especially deep 

learning. Closure relations are essential to close conservation equations. The traditional approach 

of developing closure models requires lots of efforts that involve decades of work. The models are 

usually limited to certain flow regimes or conditions. Deep learning potentially provides a flexible 

way to construct a surrogate directly from data. With sufficient training data, deep learning has the 

potential to figure out underlying correlations behind data. Simulation platforms such as Dymola 

and OpenFOAM include lots of numerical solvers that allow us to quickly deploy and test NSTH 

models for prediction. Based on data and knowledge requirements, we propose five different 

frameworks to embed DL-based closure relations in NSTH simulation in CHAPTER 3. The 

approach relaxes the structure of nuclear system codes and allows the codes to assimilate newly 

observed data that can potentially reduce uncertainty in prediction.  
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CHAPTER 3. FORMULATION OF THE FRAMEWORK 

3.1. Introduction of data-driven frameworks for closure development 

Data-driven modeling (DDM) has been previously employed to develop NSTH models. 

However, the traditional approach requires extensive efforts to gain insights and mechanistic 

understanding through analysis of data to represent data in a compact form. Figure 3.1 depicts the 

traditional framework for developing closure models. Starting from the knowledge base, we can 

design experiments to obtain relevant data, perform data analysis and research to derive sought-

after closure models for thermal fluid simulation. This approach may take years to decades. The 

long time needed for developing new closure relations limits the pace of model applications while 

dealing with newly designed systems, including new geometries and new coolants. The obtained 

closure models are implemented into thermal fluid simulation for applications and assessments. 

Once the closure models are tested and evaluated, these models are stored in the knowledge base. 

 

 
Figure 3.1. Traditional framework for developing sub-grid-scale (SGS) physics models. 
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As an alternative to the traditional framework, Figure 3.2 depicts the data-driven modeling 

framework with machine learning. After data are collected from experiments, we can use machine 

learning to figure out underlying correlations behind data. The use of machine learning has the 

potential to shorten the model development phase. For instance, deep learning uses non-parametric 

models to capture trends of data such that DL-based models are not limited to fixed model forms. 

Based on different approaches to use machine learning in NSTH simulation, a system is established 

in Section 3.2 to classify machine learning frameworks which can accomplish data-driven 

modeling of NSTH. 

 
Figure 3.2. The data-driven modeling framework for system simulations. 

 

3.2. Classification of machine learning in NSTH 
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simulations such as DNS, LES, or RANS. Several recent studies aim at closing the mass-

momentum-energy conservation equation by ML-based closures, while others on extracting 

governing equations from data. All frameworks have the goal to represent underlying correlations 

behind data and to capture data in compact forms for simulation. Based on distinct strategies of 

incorporating machine learning into NSTH simulation, we propose a classification into five 

frameworks including physics-separated ML (PSML or Type I ML), physics-evaluated ML 

(PEML or Type II ML), physics-integrated ML (PIML or Type III ML), physics-recovered (PRML 

or Type IV ML), and physics-discovered ML (PDML or Type V ML). 

Type I ML is physics-separated because it requires the separation of scales [14, 79]. 

Closure models are independently built upon data, and then they are implemented in conservation 

equations. Type II ML is physics-evaluated. The framework includes simulation based on prior 

knowledge. When discrepancies occur between observations and simulation, the observed data 

become references to inform simulation to achieve data-model consistency. Type III ML is 

physics-integrated since there is no need to separate scales. Instead, ML-based closure models are 

embedded and trained in conservation equations. Type IV ML is physics-recovered because it aims 

at recovering the form of governing equations from data. Type V ML is physics-discovered. It is 

end-to-end ML that ultimately relies on learning algorithms to figure out hidden physics from a 

considerable amount of data. 

Machine learning frameworks are solution algorithms to allow NSTH simulation to 

leverage the value of data. Figure 3.3 depicts the hierarchy of machine learning frameworks based 

on the goal structuring notation (GSN) [80, 81]. GSN can present the logic of argumentation by a 

graphic notation. Figure 3.4 gives definitions of principal components defined by GSN. Figure 3.3 

shows that the top goal (Gtop) is to maximize predictive capabilities of NSTH simulation by 
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machine learning. Then there are three sub-goals following by the top goal about how to achieve 

the top goal. First, machine learning can assimilate data to construct closure relations. Based on 

different data sources and assumptions, solution algorithms to the first sub-goal (G1) can be found 

by Type I, Type II, and Type III ML. Second, since a system can be nonlinear and include 

multiscale dynamics, we may not want to assume governing equations are known. Instead, we rely 

on ML to recover the form of equations by assuming that a thermal fluid process can be effectively 

captured by a PDE model. Type IV ML is the solution to the second sub-goal (G2). Third, if data 

are immense enough, ML is expected to discover hidden physics directly through data. Type V 

ML is the solution to the third sub-goal (G3). It is noted that the first two sub-goals lead to solutions 

that converge to conservation equations. Section 3.2.2-3.2.6 introduce each framework in detail. 
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Figure 3.3. Hierarchy of machine learning (ML) frameworks for thermal fluid simulation. 
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Figure 3.4. Principal components of the ML framework hierarchy using the notation by GSN. 

 

3.2.1. Criteria for classifying ML frameworks for thermal fluid simulation 

Each framework has its distinct goal and approach to leverage data. Since we classify five 

frameworks, we build the classification system based on four conditions. First, we examine 

whether solutions are converged meaning that solutions conserve the mass-momentum-energy 

balance in a control volume. Second, we check if the framework focuses on developing fluid 

closures. Third, we distinguish Type III ML from other frameworks because it inherently ensures 

data-model consistency. Finally, the last condition is about the separation of scales. Accounting 

for all four conditions, we categorize five distinct types of machine learning frameworks for NSTH 

simulation based on the following four criteria: 

Criterion 1: Is a PDE involved in thermal fluid simulation? 

The first criterion examines whether a conservation equation (partial differential equation, 

PDE) is involved in thermal fluid simulation. Type V ML relies on machine learning to discover 

the underlying physics directly from data and to deliver equivalent surrogates of governing 

equations. Type V ML is an extreme case when there is no prior knowledge, and we must purely 
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depend on the observed data. By this criterion, we can distinguish Type V ML from the other four 

ML frameworks. 

Criterion 2: Is the form of PDE models given? 

The second criterion inspects if the form of conservation models (partial differential 

equation models) is known. Type IV ML does not introduce biases in selecting physics models; 

instead, it recovers the exact form of conservation models based on data. Therefore, we can 

distinguish Type IV ML from Type-I, Type II, and Type III ML. 

Criterion 3: Is a PDE involved in the training of closure relations? 

A partial differential equation is involved in Type I, Type II, and Type III ML. Therefore, 

the goal is to develop closure models in nonparametric forms to close conservation equations. 

Criterion 3 checks whether conservation equations are involved in the training of ML-based 

closures. Traditionally, the assumptions [82, 83] of scale separation and physics decomposition 

are essential to develop closure models. The former allows us to set up SETs for various scales 

while the latter decomposes closure relations into different physics within the same scale. 

However, in many thermal fluid processes, the physics (physical mechanisms) is tightly coupled. 

Type III ML avoids these two assumptions by training closure models that are embedded in PDEs. 

By this criterion, we can distinguish Type III ML from Type I and Type II ML. 

Criterion 4: Is a scale separation assumption required for model development? 

This criterion tests whether the model development requires the separation of scales. This 

hypothesis isolates closure relations from conservation equations so that the models can be 

separately built and calibrated by SETs. The scale separation is essential for Type I ML because it 

only relies on data to construct closure models. However, the data by SETs may have been 

distorted, while IETs are designed to capture (a selected set of) multi-physics phenomena.  
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Table 3.1 summarizes the criteria to classify the five distinct types of ML frameworks for 

NSTH simulation.  

 

Table 3.1. Criteria for the ML framework classification. 

Classification Criteria 
Type I 

ML 
(PSML) 

Type II 
ML 

(PEML) 

Type III 
ML 

(PIML) 

Type IV 
ML 

(PRML) 

Type V 
ML 

(PDML) 
1. Is a PDE involved in thermal 
fluid simulation? Yes Yes Yes Yes No 

2. Is the form of PDE models given? Yes Yes Yes No No 
3. Is a PDE involved in the training 
of closure relations? No No Yes No No 

4. Is a scale separation assumption 
required for the model development? Yes No No No No 

 

3.2.2. Type I machine learning, physics-separated machine learning (PSML) 

Type I ML or so-called physics-separated ML (PSML) aims at developing closure models 

by using SET data. Type I ML assumes that conservation equations and closure relations are scale 

separable, for which the models are local. Type I ML requires a thorough understanding of the 

system so that SETs can be designed to support model developments. Figure 3.5 depicts the 

hierarchical decomposition of system simulation that allows physics models to be scale separable. 

The system can be divided into various sub-systems such as a reactor core, steam generator, reactor 

coolant system, and emergency core cooling system. The foundations of those sub-systems are 

multiphase models that require closure relations based on sub-grid-scale physics. Figure 3.6 

illustrates the workflow about how we can obtain closure models to close conservation equations 

where the models are separately developed by using SET data. Therefore, we can apply ML-based 

closures to assimilate data to achieve data-driven thermal fluid simulation. 
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Figure 3.5. Hierarchical decomposition of system thermal-hydraulics simulation. 
 

 
Figure 3.6. Closure development requires a scale separation assumption. 

 

Figure 3.7 depicts the architecture of Type I ML framework, and it is forward data-driven 

modeling. The procedure includes the following elements: 

Element 1. Assume a scale separation is achievable such that closure models can be built 

from SETs. From either high-fidelity simulations or experiments, collect training data, (xk, 
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Additionally, consider normalizing data so that we can approximately equalize the 

importance for each data source. For large datasets, employing principal component 

analysis [84] can be helpful to reduce the dimension of data. 

Element 3. Compute flow features or system characteristics, X, as training inputs for 

element 5. 

Element 4. Calculate the corresponding outputs (Y) of the desired closures from data as 

training targets that can supervise ML algorithms to learn from data. 

Element 5. Utilize ML algorithms to build a correlation between inputs and targets. After 

the training, output the ML-based closure model, ML(X), to element 6. 

Element 6. Constrain the ML-based closure, g(ML(X)), to satisfy model assumptions and 

to ensure the smoothness of model outputs since it needs to be solved with PDEs. It is noted 

that this element is not essential if assumptions are not applicable. 

Element 7. Implement the ML-based closure into conservation equations, and solve PDEs 

for predictions with the embedded ML-based closure that is iteratively queried. 
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Element 1. Collect data from high-fidelity simulations 
or experiments, 

(xk, yk),  k=1,2,…,n

Element 5. Use ML algorithms to figure out the underlying physics behind data, 
ML(X) ≈ Y 

(Supervised learning with given inputs and targets)

Element 6. Apply physics constraints to ML-based models based on fluid features or model assumptions
g(ML(X))

 (Guidance to regularize ML-based models)

Element 3. Select flow features or system 
characteristics as training inputs, 

X

Element 4. Prepare the corresponding outputs 
of closure models as training targets, 

Y = f(X)

Element 2. Preprocess data

Element 7. Perform thermal fluid simulations with ML-based closure models for predictions

Conservation equations

ML-based thermal fluid closures
 

Figure 3.7. Overview of Type I ML framework with a scale separation assumption. 

 

Type I ML satisfies the criteria from Table 3.1 except the third criterion. The quality of 

SET data largely controls the performance of closure models obtained by Type I ML. While the 

experimental uncertainty in each SET may be controlled and reduced, the process uncertainty 

(dominated by design assumptions) is irreducible. We note that PDEs and closure relations are 

decoupled in Type I ML. It can cause model biases between conservation equations and closure 

relations. It is noted that inferring model parameters from data belong to inverse problems which 

are ill-posed [85]. For ML models, a small change in inputs can result in large uncertainty in 

outputs. While implementing ML-based closures in PDEs, the uncertainty can lead to a 

discontinuity that fails numerical simulation. For more practices related to Type I ML, readers are 
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referred to Ma et al. [71-73], Parish & Duraisamy [74], Zhang & Duraisamy [18], Tracy et al. [75, 

86], Singh & Duraisamy [87], and Chang & Dinh [88, 89]. 

3.2.3. Type II machine learning, physics-evaluated machine learning (PEML) 

Type II ML or so-called physics-evaluated machine learning (PEML) focuses on reducing 

the uncertainty for conservation equations. It requires prior knowledge on selecting closure models 

to predict thermal fluid behaviors. Type II ML utilizes high-fidelity data to inform low-fidelity 

simulation. Comparing to high-fidelity models, ROMs can efficiently solve engineering design 

problems within an affordable time frame. However, ROMs may produce significant uncertainty 

in predictions. Type II ML can improve the uncertainty of low-fidelity simulation by reference 

data. Since the physics of thermal fluids is nonlinear, ML algorithms are employed to capture the 

underlying correlation behind high-dimensional data. The framework requires training inputs such 

as flow features that represent the mean flow properties. Training targets are the responses that 

correspond to input flow features. 

Figure 3.8 depicts the framework of Type II ML, and it includes the following procedures: 

Element 1. Perform low-fidelity simulation (ΨL) to generate data for calculating input flow 

features. 

Element 2. Perform high-fidelity simulation (ΨH) with identical system characteristics in 

element 1. High-fidelity data are used to compute targets in element 5. 

Element 3. Average high-fidelity data to match the dimension of low-fidelity data. The 

averaging method should preserve the consistency between high-fidelity and low-fidelity 

simulations. Additionally, normalizing data can accelerate the training of ML. For large 

datasets, principal component analysis [84] can reduce the dimension of data. 

Element 4. Calculate flow features, X(ΨL), as training inputs to element 6. 
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Element 5. Compute targets, f(X(ΨH)), as the responses to input flow features by high-

fidelity data. Targets can also be discrepancy/error, ε(ΨH , ΨL), between high-fidelity and 

low-fidelity data. 

Element 6. Use an ML algorithm to represent the underlying correlation between flow 

features and discrepancy/error of flow properties. After the training, output an ML-based 

discrepancy/error model, ML(X(ΨL)), to element 8. 

Element 7. Execute new low-fidelity simulation (Ψ’L) under predicting conditions. Then 

use the solution to obtain flow features as inputs to element 8.  

Element 8. Use flow features from element 7 as inputs to query values from the ML-based 

model, ML(X(Ψ’L)). Output values of a fluid closure in a fixed field to element 9. 

Element 9. Implement the results from element 8 in the low-fidelity model (ΨL) for 

predictions. 

Element 1. Perform low-fidelity simulations,
ΨL

Element 6. Use ML algorithms to figure out the 
underlying physics behind data, 

ML(X(ΨL)) ≈ Y 
(Supervised learning with given inputs and targets)

Element 4. Select flow features from low-
fidelity simulations as training inputs, 

X(ΨL)

Element 5. Prepare the response of closures or 
discrepancy/error (ε) between high-fidelity and 

low-fidelity models as training targets, 
Y = f(X(ΨH)) or ε(ΨH , ΨL)

Element 3. Preprocess data

Element 8. Query outputs from ML-based 
discrepancy/error/closure models,

ML(X(Ψ’L))

Element 2. Perform high-fidelity simulations,
ΨH

Element 7. Perform low-fidelity 
simulations for predictions to 

compute fluid features
Ψ’L

Element 9. Inform low-fidelity simulations by 
discrepancy/error models or closures as fixed fields 

for predictions  
Figure 3.8. Overview of Type II ML framework. 
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Type II ML satisfies the first two criteria in Table 3.1. We note that PDEs and closure 

relations are loosely coupled in Type II ML because PDEs are only used for calculating input flow 

features. The framework provides a one-step solution to improve low-fidelity simulation. Model 

uncertainty is not accumulated in Type II ML because numerical solvers do not interact with ML 

models. However, for Type II ML there exists an open question about what the magnitude of initial 

errors can be before it is too late to bring a prior solution to a reference solution. For more detailed 

exampless of Type II ML, readers are referred to Ling & Templeton [43], Ling, et al. [90], Wu et 

al. [76], Wang et al. [77, 78], Ling et al. [19], and Zhu & Dinh [91].  

3.2.4. Type III machine learning, physics-integrated machine learning (PIML) 

To the best knowledge of the author, Type III ML or so-called physics-integrated ML 

(PIML) is introduced and developed for the first time in this work. Type III ML aims at developing 

closure relations to close thermal fluid models without a scale separation assumption. Closure 

models are embedded and trained in system dynamics. Training data can be obtained from SETs 

and IETs. Notably, Type III ML can lead the paradigm shift of using ML in thermal fluid 

simulation because it allows the direct use of field data from IETs. Figure 3.9 shows the framework 

of Type III ML. Inputs for Type III ML do not directly come from observations; instead, they are 

solutions of PDEs. Type III ML involves the following elements: 

Element 1. Collect data, (xk, yk), from high-fidelity simulations or experiments that are used 

to compute targets for the training. 

Element 2. Preprocess the data from element 1 to ensure that data from multi-sources are 

consistent with conservation equations regarding the dimension and manipulation such as 

the selection of averaging methods. Additionally, consider normalizing data so that we can 
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approximately equalize the importance for each data source. For large datasets, employ 

principal component analysis [84] can reduce the dimension of data. 

Element 3. Prepare training targets (Y) from data that corresponds to PDE solutions. 

Element 4. For the initial step of the sub-framework, calculate flow features (X) from data 

as training inputs for element 5. After that, flow features are computed based on PDE 

solutions from element 6. 

Element 5. Adjust model parameters of an ML-based closure, ML(X), using an ML 

algorithm. Then output the ML-based closure to element 6. 

Element 6. Solve conservation equations with the ML-based closure that is iteratively 

queried during a solution scheme. 

Element 7. Check if the solution from element 6 converges to the target values within a 

tolerance interval. If the convergence test does not pass, go to element 4 and continue the 

loop in the sub-framework. If the result is converged, output the conservation model with 

the embedded ML-based closure to element 8. The selection of tolerance intervals is case-

dependent. 

Element 8. Solve the PDE model from element 7 with new system characteristics for 

predictions. 
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Element 1. Collect data from high-fidelity simulations or experiments,
(xk, yk),  k=1,2,…,n

Element 2. Preprocess data

Element 3. Prepare training targets from data that corresponds to PDE solutions,
Y = f(X)

 Use ML algorithms to figure out the underlying physics behind data
(Supervised learning with given inputs and targets)

Element 8. Obtain field equations with ML-based closures for predictions

Yes

Element 5. Adjust model parameters of ML-based fluid closures by 
ML algorithms based on training targets, 

ML(X) ≈ Y

Element 4. Employ flow features as training inputs, 
X

Element 6. Solve thermal fluid models with ML-based closures

ML-based thermal fluid closures

Conservation equations

Element 7. Convergence? No

 
Figure 3.9. Overview of Type III ML framework. 

 

Type III ML satisfies most criteria in Table 3.1 except for the fourth criterion. We note that 

PDEs and closure relations are tightly coupled in Type III ML. It is a challenging problem. Such 

tightly coupled multiscale problems require that numerical solutions (of the governing PDE 

system) are realized (hence evolving datasets for training) whenever ML algorithms tune model 

parameters. Therefore, Type III ML is computationally expensive. The research on Type III ML 
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methodology promises a high-potential impact in complex thermal fluid problems where the 

separation of scales or physics decomposition may involve significant errors. 

3.2.5. Type IV machine learning, physics-recovered machine learning (PRML) 

Type IV ML or so-called physics-recovered ML (PRML) aims at recovering the exact form 

of PDEs. Figure 3.10 depicts the framework of Type IV ML. It requires no assumption about the 

form of governing equations. Instead, the framework requires to construct a candidate library that 

includes components of governing equations such as time derivative, advection, diffusion, and 

higher order terms. For instance, Eq. (3.1) shows the equation that we want to recover from data. 

We can assume a model given in Eq. (3.2) where Θ(X) is a library including candidate terms and 

it is defined by Eq. (3.3). The goal is to find the vector (ξ) such that ξ can make Eq. (3.2) identical 

to Eq. (3.1). Eq. (3.4) gives a solution which can be found by the sparse regression method [69]. 
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The procedure of Type IV ML contains the following elements: 

Element 1. Collect time series data (ωt) from either validated simulations or experiments. 

Element 2. Build a library, Θ(X), for candidate terms in governing equations. 

Element 3. Reconstruct governing equations using the time derivative term (𝜕𝜕𝑦𝑦 𝜕𝜕𝜕𝜕⁄ ) and 

the optimal combination of candidate terms by sparse regression [69] with a sparse vector 

(ξ) that follows Occam’s razor [92]. 
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Element 4. Solve the recovered governing equation with new system characteristics for 

predictions. 

 

Element 1. Collect time-series data from simulations or experiments,
ωt 

Element 2. Build a library for candidate terms in the governing equation such as 
constant, advection, diffusion, and higher order terms

Θ(X) 

Element 4. Solved the recovered governing equation for predictions

Element 3. Use ML algorithms to figure out the underlying physics behind data, 
and identify the combination of each term for the governing equation,

= Θ(X)ξ 

(Supervised learning with given inputs and targets)

 
Figure 3.10. Overview of Type IV ML framework. 

 

Type IV ML only satisfies the first criterion in Table 3.1. The challenge of Type IV ML 

can be the recovery of closure relations in thermal fluid models. Closure models are usually 

complex, and they are hard to be represented by each derivative term. Therefore, it is an open 

question about how to apply Type IV ML for complex flow system such as turbulence modeling. 

For more practices related to Type IV ML, readers are referred to Brunton et al. [69]. 

3.2.6. Type V machine learning, physics-discovered machine learning (PDML) 

Type V ML or so-called physics-discovered ML (PDML) is the extreme case. Type V ML 

is used for either condition. First, it assumes no prior knowledge of physics. Second, it assumes 

existing models and modeling tools are not trustworthy or not applicable for thermal fluid systems 

under consideration. More generally, Type V ML is “equation-free” and instrumental in the search 
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for a new modeling paradigm for complex thermal-fluid systems. Type V ML does not involve 

conservation equations nor satisfy any criterion in Table 3.1. Instead, it wholly relies on data to 

discover the effective predictive models. However, such situation rarely occurs because there are 

usually physics principles or hypotheses that can be postulated to reduce the dimension of 

problems. For the discussion related to Type V ML, readers are referred to Mills et al. [70], and 

Hanna et al. [93]. 

3.2.7. Knowledge and data requirements for ML frameworks in NSTH 

In the present context of ML, knowledge refers to a body of theoretical and empirical 

evidence that is available and trustworthy for understanding and description of physical 

mechanisms that underlie thermal fluid processes under consideration. This knowledge can guide 

selecting model forms, including conservation equations and corresponding closure relations, 

designing experiments, and performing high-fidelity simulations. The data requirements refer to 

characteristics of the body of data (e.g., types, amount, quality) needed to enable NSTH simulation 

with the required accuracy. In other words, the required data must be sufficient to complement the 

“knowledge” for building closure models and recovering/discovering the physics. 

The form of PDEs are known for Type I, Type II, Type III ML, and the focus is to build 

closure relations. In traditional modeling approaches, closure models are local, relating a group of 

(local) source terms (i.e., sub-grid-scale interactions) to a group of (local) flow features. Even 

when in engineering literature, source terms are expressed regarding global parameters (like flow 

rate, system pressure), they are used as surrogates for local-valued parameters (through the 

assumptions that equate global and local conditions).  

Type I ML build closure relations independently from PDEs, but it requires a thorough or 

assumed understanding of the physics that is essential to set up SETs for acquiring data. Globally 
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measured data or locally measured data (using point instruments) are very small amount of data. 

In such case, complicated ML-based closures are not necessarily the best choice. Therefore, among 

the frameworks, Type I ML exhibits a minimal data requirement with a maximal knowledge 

requirement. 

Type-II ML assumes prior knowledge of physics that guide the selection of closure 

relations for NSTH simulation. However, the use of prior models yields uncertainty in thermal 

fluid analyses. This uncertainty (or error) can be inferred by comparing the model prediction to 

reference solutions from high-fidelity simulations, high-resolution experiments as well as data 

obtained in IETs that include multi-physics phenomena. Correspondingly, Type II ML requires 

larger data quantities but less knowledge than Type I ML. 

Type III ML trains closure relations that are embedded in conservation equations without 

invoking a scale separation assumption. IET data can be directly adapted into simulation by 

applying Type III ML. While the term ML is broad, in the present work ML refers to the use of 

non-parametric models or even narrower, use of DNNs. This means no prior knowledge of model 

forms of closure relations. Thus, Type III ML requires less knowledge than Type II ML (which 

“best-estimated” closure models on the basis of past data). Consequently, Type III ML requires a 

large body of data to represent models than that of Type II ML. 

Type IV ML intends not to make any bias on selecting conservation equations; instead, it 

recovers the exact PDE form from data. It assumes less prior knowledge but requires more 

extensive training data than the previous three frameworks.  

Type V ML is an extreme case that makes no assumption about prior knowledge or 

reference solutions for thermal fluid systems under consideration. The aim is to apply ML methods 

to learn from data, and to establish a data-driven predictive capability. For NSTH simulation, it 
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means discovering the effective model form of conservation equations and closure relations. 

Accordingly, among the frameworks, Type V ML is the most stringent with respect to data 

requirements (types, quantity, and quality). 

Figure 3.11 depicts the domain of ML frameworks regarding prior knowledge and data 

requirements. 

 
Figure 3.11. The domain of various ML frameworks. 

 

3.3. Contemporary works 

The contemporary works summarized in Section 2.5 can be classified using five types of 

ML frameworks. Figure 3.12 summarizes the contemporary works of using ML in NSTH. While 

there is a growing interest and recognition of potential capability of ML in NSTH simulation, 

development in this area is still in its infancy. There is no two-phase flow application in thermal-

hydraulics yet identified from the literature surveys. In this work, we classify five ML frameworks 

for DDM of NSTH. Selections of frameworks are based on knowledge and data requirements. 

M

H

L

ML H
Data Requirement

Type-I ML (PSML)

Type-II ML (PEML)

Type-III ML (PIML)

Type-IV ML (PRML)

Type-V ML (PDML)
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Figure 3.12. Contemporary work of using ML in thermal fluid simulation. 

 

3.4. Evaluation and implementation of machine learning frameworks 

3.4.1. Method of manufactured data (MMD) 

To evaluate the proposed ML frameworks, this dissertation work proposes a method of 

manufactured data (MMD) as surrogates for actual datasets (such as experimental measurements 

and simulation results) in real-life applications. MMD applies a computer code with high-fidelity 

models to generate numerical solutions, of which datasets with distinct characteristics are selected 

for training and testing purposes. The “high fidelity” here refers to models which have been 

subjected to extensive adjustments and assessed to be trustworthy for conditions under 

consideration. Both training and testing datasets can be generated with different degrees of detail 

(homogenization, amount), controlled uncertainty (“manufactured errors and biases”), and other 

qualities. The testing datasets are typically broader than training datasets because they will serve 

as the benchmarks to evaluate predictive capability of the trained models. 
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3.4.2. Requirements of well-posedness 

Inferring models from data belongs to inverse problems which are ill-posed. According to 

Hadamard’s [85] definition, well-posed problems should satisfy three requirements: a solution 

should exist, the solution should be unique, and the solution should continuously depend on data. 

Based on Hadamard’s definition, we define the well-posed criteria for PDE-constrained machine 

learning (PDE-ML) problems as follows.  

(a) A solution should exist. 

(b) The acceptable solutions should be limited in an acceptable interval. 

(c) A small change in the inputs should only cause a small change in the outputs. 

In NSTH simulation, there are lots of closure relations which represent the data from legacy 

experiments in compact forms. To leverage the values from those experiments, requirement (c) 

can be extended as follows. 

(d) The output behavior of ML-based models should change continuously with insights. 

The “insight” refers to the current knowledge to the problem of interest. For instance, the 

friction factor should be proportional to the inverse of Reynolds number for laminar flow. Based 

on requirement (d), we define the model complexity (MC) by Eq. (3.5) where I is insights. Models 

(M) are machine learning models, and we use deep neural networks in this study. Parameters (Par) 

are governing parameters such as flow properties. Eq. (3.6) defines model-insight consistency 

(MIC) which can be used to systematically analyze the requirement of well-posedness. MIC does 

not relate to the model accuracy; instead, it serves as a criterion to select an optimal DL-based 

model that is well-posed. We refer both MC and MIC numbers as the physics-informed regulation 

parameters. 



www.manaraa.com

 

 63 

| | | |

| |

M I
Par ParMC I

Par

∂ ∂
−

∂ ∂=
∂

∂

                                       (3.5) 

 1MIC MC= −   (3.6) 

3.4.3. Search for well-posed PDE-constrained ML models 

Based on the physics-informed regulation parameters (model complexity and model-

insight consistency), we propose the physics-constrained deep learning (PCDL) strategy to obtain 

well-posed deep learning models for NSTH simulation. PCDL includes a two-step process: policy 

and value networks. The policy network can pre-identify the numerical stability criteria of PDE 

solutions. The value network utilizes those criteria to search for deep learning models which are 

well-posed. 

Figure 3.13 depicts information flow of the policy network, which can search for the 

numerical stability criteria of PDE solutions. Initially, we arbitrarily assign hyperparameters for 

deep neural networks such as numbers of hidden units and hidden layers and learning rate. Then 

we start to train deep neural networks with random weight initialization. After the training, we 

implement DL-based closure relations in conservation equations for system simulation. If the 

solution is diverged, we record the parameter set and simulation results which become inputs for 

the value network. If the solution is converged, we need to adjust model hyperparameters until the 

unsuccessful simulation is found. 
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Figure 3.13. Policy Network for numerical stability criteria of coupled PDE-DL simulation. 

 

The value network takes inputs from training datasets, insights, and outputs of the policy 

network. By using insights and the outputs of the policy network, we can calculate model 

complexity given by Eq. (3.5) from the unsuccessful simulation. Therefore, we can calculate 

model-insight consistency from model complexity, and model-insight consistency will become the 

screening criterion to search for the optimal DL-based closure model. 

Figure 3.14 illustrates information flow of the value network, which can search for the 

well-posed deep learning model for NSTH simulation. Initially, we train multiple deep neural 

networks with different hyperparameters. After the training, DL-based closures are implemented 

in conservation equations. Based on model-insight consistency, we can find well-posed deep 
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learning models. Then we test those models with testing data to figure out the optimal model with 

the maximum predictive capability. The process can be iteratively repeated until we find the 

optimal hyperparameter set for DL-based closures. The case study in CHAPTER 4 demonstrates 

how to use the physics-constrained deep learning strategy to obtain the DL-based friction model 

that is well-posed. 

Data
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No

Initial Guess on Model 
Hyperparameters 

Deep Learning

DL-based 
Closure Models

System Simulation

Adjust Model 
hyperparameters

Physics-informed 
Regularization

Policy Network

Insight

MIC?

 
Figure 3.14. Value network for development of well-posed DL-based closure models. 

 

3.4.4. Data quantity requirements 

The well-posed requirement (c) in Section 3.4.2 requires that a small change in the inputs 

should only cause a small change in the outputs. When training data are insufficient, DL-based 

models can be sensitive to the inputs such that a small change in the inputs can result in a large 
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change in the outputs. To investigate in this sensitivity issue, we use principal component analysis 

(PCA) [94] to correlate the eigenvalues of training datasets to the relative output error.  

Eq. (3.7) defines the fraction of variance explained by a single principle component where 

λ and i are the eigenvalue and ith principal component. 

 i
i

i
i

ev λ
λ

=
∑

  (3.7) 

We assume the minimum principal components should at least explain 95% of the total 

variance from raw data. Eq. (3.8) defines the recovery factor (RF) to quantitatively analyze the 

constraint of required datasets for achieving robust PDE-DL simulation. Recovery factor is scaled 

to return the value between zero and one. It is one when all the datasets are used for the training. 

 max 20 0.95 ,0i
i

RF ev
  

= −  
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Eq. (3.9) defines the relative error (ε) for sensitivity analysis where ŷ  and y  are the model 

output and data.  

ŷ y
y

ε
−

=        (3.9) 

Figure 3.15 depicts the workflow to determine the minimum training datasets for well-

posed deep learning models. Initially, we apply PCA to the raw data and select several candidate 

datasets with different amount of training data. For each candidate dataset, we calculate RFs and 

train the corresponding deep learning models. After obtaining well-trained deep learning models, 

we can perturb model inputs by a small error. Then we can check if the error is amplified by deep 

learning models. If the error is amplified, we abandon the model and test other models which are 

trained with more datasets. Until we find a deep learning model that is satisfy the well-posed 

requirement (c) in Section 3.4.2, we record its recovery factor number and this number reflects the 
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minimum training datasets for a well-posed deep learning model. If we cannot find any model that 

satisfy the well-posed requirement, we need to increase the quantity of training data. Then we 

repeat the processes in Figure 3.15 until a well-posed deep learning model is found. 

The case study in CHAPTER 5 demonstrates how to decide the minimum datasets for a 

well-posed DL-based closure model using the workflow in Figure 3.15. 

Observed Data 
(Experiment or Simulation)
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No

Sample Datasets with Different 
Sizes

PCA to Exam the Representability 
of the selected Datasets

Train DL-based Closure Models

System Simulation

Increase Training 
DatasetsSample the Input Parameters with 

Uncertainties and Observe the 
Response by DL models

Well-posedness?

 
Figure 3.15. Workflow for data requirement of DL-based fluid closures. 

 

3.5. Summary 

Five ML frameworks are formulated in this chapter for data-driven modeling of NSTH. 

Each machine learning framework can leverage values of data from advanced validation 
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experiments or high-fidelity numerical simulations. The selection of framework is based on data 

and knowledge requirements. The framework with deep learning can shorten model development 

time and extend the applicability of NSTH simulation. To evaluate machine learning frameworks 

for NSTH simulation, we use manufactured data that allow us to manipulate different data qualities 

for framework comparison. 

Although a classification system is established in this chapter, there are still challenges 

about how to implement machine learning frameworks in NSTH simulation. Starting from 

CHAPTER 4, several case studies are formulated to investigate in the critical questions of PDE-

DL simulation. Those questions are listed as follows. 

(a) What is data? How frequent should data be sampled? How much data are sufficient for 

a well-posed DL-based closure? 

(b) What are flow features? How to select flow features? 

To leverage values of a substantial amount of data, the next generation NSTH code is 

expected to be multi-dimensional. Therefore, the case studies are formulated to include system-

level simulation and CFD simulation.  
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CHAPTER 4. CASE STUDY A: REQUIREMENTS OF WELL-POSEDNESS 

4.1. Introduction 

In this case, we show that DL-based friction closure can cause the modeling of single-phase 

water to diverge if multilayer neural networks are used, and how to employ the physics-constrained 

deep learning (PCDL) strategy to build the well-posed DL-based closures for PDE simulation. We 

refer to this process as PDE-constrained machine learning or PDE-ML. The isothermal single-

phase flow simulation is the simplest application that it only requires the wall friction drag. To 

address the issue of PDE-DL simulation, we investigate the conditions by which the DL-based 

closure models work compatibly, stably, and effectively with PDE-constrained forward prediction 

problems. To develop the technical basis for PDE-ML, numerical experiments are performed for 

manufactured problems of increasing complexity. The case study belongs to Type I ML. 

 

4.2. Objective 

The objective of this case study is to investigate whether model-insight consistency (MIC) 

can be used as the screening criterion to find well-posed DL-based closures. The proposed notion 

of MIC and PCDL strategy are defined in Section 3.4.2. 

 

4.3. Problem formulation 

We examine the PCDL strategy by using the known solution for the wall friction problem 

in the Modelica Standard Fluid Library (MSFL) to manufacture experimental data and construct a 

DL-based friction closure by PCDL from globally measured data at inlet and outlet. Figure 4.1 

depicts the layout of the numerical experiment. The flow properties such as the pressure drop and 

mass flow rate are recorded from “testSection” pipe. 
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Figure 4.1. Experiment simulation layout in Modelica. 
 

Figure 4.2 shows a controller with a ramp function for varying the mass flow rate. To 

simplify the problem, we deal with laminar flow and control the Reynolds numbers ranging from 

100 to 2000. We uniformly sample 462 points for the case where Reynolds numbers are within 

[300, 1800] at the outlet of the testSection pipe. The manufactured datasets allow us to test the 

performance of DL-based friction closure in the extrapolation region since the range of Reynolds 

number in the training dataset is smaller than the Reynolds number in the actual application. 

 

 

Figure 4.2. A controller for varying the mass flow rate. 
 

Then the generalized DL-based friction closure is implemented into MSFL, and we test if 

the baseline solution can be reconstructed. The training target, friction factor, is obtained by Eq. 
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(4.1) assuming the flow is fully-developed. The governing parameter (Par) in this case is Reynolds 

number, and we select it as the input for training DL models. Table 4.1 summarizes the 

experimental condition, and we uniformly sample 462 points from the training dataset.  

 22 hydPD
G L

ρ
ξ

∆
=   (4.1) 

Table 4.1. Experimental conditions. 
Parameters Values 

Pipe length (m) 2 
Pipe diameter (m) 6.25 x 10-3 
Flow rate range (kg/s) 4.06 x 10-4 – 8.6 x 10-3 
Re range for experiment 100 – 2000 
Re range for training 300 – 1800 

 

4.4. Theoretical treatment 

We assume that the global model is valid for the local application and this is a reasonable 

assumption because this case models single-phase laminar flow in a smooth pipe. Therefore, the 

friction factor can be calculated by Eq. (4.1) using the measurement data from the numerical 

experiment. It is the global friction model since it uses the full pipe length to calculate the friction 

model. 

The insight, in this case, is the analytical friction factor by assuming the flow was parabolic 

[95]. Figure 4.3 shows a diagram of fully-developed laminar flow in a cylindrical channel with the 

pip length and radius equal to L and R. Eq. (4.2) shows the force balance where τ and P are the 

viscous stress and pressure. Eq. (4.2) can be rearranged into Eq. (4.3) to present the relation 

between the viscous stress and pressure difference. At r = D/2, Eq. (4.4) shows the wall shear stress. 

Eq. (4.5) shows the shear stress of a Newtonian fluid where u denotes the velocity in the axial 

direction. We can take Eq. (4.3) into Eq. (4.5), and integrate Eq. (4.6) to obtain the axial velocity 

profile given in Eq. (4.7). Because the pipe is axisymmetric along the centerline, we can derive the 
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volumetric flow rate from Eq. (4.8). Then we can further rearrange the equation into Eq. (4.9) that 

gives the relation between the pressure difference and average velocity (v). Finally, we take Eq. 

(4.9) into Eq. (4.1) to obtain the analytical form of the friction factor for the laminar fully 

developed flow. Eq. (4.10) is used to examine whether the DL-based friction model changes 

continuously with the insight for the problem of interest. 

 

 

Figure 4.3 Diagram of laminar flow in a cylindrical pipe. 
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4.5. Implementation 

4.5.1. 1D area-averaged mass-momentum conservation equation 

Eq. (4.11) and Eq. (4.12) give the 1D area-averaged mass-momentum conservation 

equations in the discretized form. According to staggered grid configuration, the velocity is solved 

at the boundary, and the pressure is solved at the cell center where j presents the jth cell. Eq. (4.13) 

shows how to solve the nonlinear term in Eq. (4.12) using Newton-Raphson method. The time 

discretization will use Radau IIA [96] solver in the Dymola platform. 

 1 2 1 2 1 2 1 21 2 1 2 0
j j j j

t t t
j j t t t t t
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ρ ρ
ρ ρ
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+ +
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∆ ∆ ∆
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 1 1( ) (2 ) | |k k k kf v v v v+ += −       (4.13) 

4.5.2. Deep neural networks model 

Eq. (4.14) shows the sigmoidal function as the activation for the DL model. Eq. (4.15) 

defines the structure of the first hidden layer of a neural network where j denotes the jth number of 

hidden units. To acquire the scalability, the Reynolds number is selected as the input. Eq. (4.16) 

defines the hidden layer starting from the second to the last hidden layer where i is the number of 

inputs from previous hidden layer and k indicates the kth layer number. Starting from the second 

hidden layer, the total number of inputs depends on the number of hidden units from the previous 

layer. Eq. (4.17) gives the output layer of deep neural neworks which is the linear combination of 

the last hidden layer, and K denotes the total number of hidden layer. We can replace the friction 

factor in Eq. (4.12) by Eq. (4.17) to achieve PDE-constrained prediction using the DL-based 

friction closure. 
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 1( )
1 xsigmoid x

e−=
+

  (4.14) 

 1 1 1(Re) ( Re )j j jHU sigmoid w b= +   (4.15) 

 1 1,( ) ( )kj k kji k i kj
i

HU HU sigmoid w HU b− −= +∑   (4.16) 

 1 1,( )DL K oji K i o
i

HU w HU bξ − −= +∑   (4.17) 

After collecting the data from the experiment, we construct DL-based closure models 

through the two-step physics-constrained deep learning (PCDL) strategy. First, the policy network 

is employed to search for the unsuccessful conditions for the simulation. Table 4.2 gives the model 

parameters of deep neural networks. Then we construct nine DL-based friction closures by (n+1)-

layer NN models using Eq. (4.17) where n varied from one to three and n represents the total 

number of HL. To simplify the case, we let the number of hidden units be the same in each hidden 

layer. After defining deep neural networks with different model parameters, we use Tensorflow to 

optimize the weights in each layer to obtain the working models that we can implement in the 

system code for further evaluation.  

 

Table 4.2. Parameters for DL-based wall friction models. 
Parameters Values 

Activation function Sigmoid 
Number of HU in each HL 5, 25, 100 
Number of HL 1, 2, 3 
Number of inputs 1 
Number of outputs 1 
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4.6. Data processing and results 

The first step of PCDL is to identify when the PDE-DL simulation failed. Following the 

workflow of the policy network given by Figure 3.13, Table 4.3 records the performance of PDE-

DL modeling with different deep neural networks, and this information serves as the input for the 

value network to search the optimal DL-based friction closure. According to Table 4.3, the 

instability issue occurs as the number of hidden units increased. There is no numerical issue for 

the model with small hidden units and large hidden layers. In the meantime, large hidden layers 

help the model to accurately catch the pattern from complex data. 

 

Table 4.3. Performance record from the policy network. 
HU                 DL 2-layer 3-layer 4-layer 

5 Success Success Success 
25 Success Failure Failure 
100 Failure Failure Failure 

 

The insight, in this case, is the analytical friction factor given by Eq. (4.10), and we 

compute the model-insight consistency (MIC) number given by Eq. (3.5) and Eq. (3.6). Figure 

4.4(a) depict the MIC plot for three deep neural networks with the same hidden units but different 

hidden layers, and all three models are successfully solved with conservation equations without 

numerical stability issues. Figure 4.4(b) shows that some PDE-DL simulations fail in the predicting 

domain with high Reynolds number (Re > 1800). PDE-ML simulations with complex structures 

start to fail when the MIC number is below 0.7. The value of 0.7 is recommended as the screening 

criterion in this case. Also, we resample 4620 points from the original experiment outcome and 

retrain the DL model. Figure 4.5 shows that the MIC is significantly increased with large datasets. 

In the meanwhile, we compare the performance of two activation functions, sigmoid and 

ReLU (rectified linear unit), using the same hyperparameters for model construction. ReLU 
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functions is defined as max(0, x) where x is the input. Under the same training condition, sigmoidal 

function yields better smoothness and fitting for this problem. Therefore, the value network 

focuses on searching the optimal DL-based friction closure using sigmoid function along with the 

insight and screening MIC number from the outcome of the policy network. 

 
(a)                                                                   (b) 

Figure 4.4. (a) Model-insight consistency (MIC) for ML-based friction models with different 
hidden layers, and (b) model-insight consistency (MIC) for ML-based friction models with 

different hidden units and layers. 
 

 
Figure 4.5. Model-insight consistency (MIC) for friction models with different datasets. 
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Based on the workflow by Figure 3.14, the value network finds that the four-layer neural 

network gives the optimal result. Figure 4.6(a) depicts the results of the full pipe pressure drop by 

using DL-based friction closures to replace the friction model in Eq. (4.12). When we fix the 

number of hidden units equal to five in each hidden layer, all DL-based friction closures 

successfully achieve PDE-DL simulation. However, the two-layer neural network is found to 

perform poorly in both prediction and training domains when it is compared to three-layer and 

four-layer neural networks. Figure 4.6(b) shows the residual plot where the residual is defined by 

Eq. (4.18). All model errors, relatively small in training, escalate in the extrapolation domain as 

expected.  

 Residual DL ExperimentP P= ∆ −∆   (4.18) 

 
(a)                                                                   (b) 

Figure 4.6. (a) Full pipe pressure drops in both training and extrapolation domains by DL-based 
friction models, and (b) residual of full pipe pressure drops in both training and extrapolation 

domains by DL-based friction models. 
 

Figure 4.7(a) shows the results of friction factors by Eq. (4.1) for three different deep neural 

networks. Although all models deviate from the experiment data in the low-Re extrapolation 

domain, there is no significant impact for calculating the pressure drop. Figure 4.7(b) illustrates 

that the pressure drop calculation is sensitive to the predictive friction factor in the high-Re domain. 
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As a result, the four-layer neural network tends to exhibit good predictability in the high-Re 

extrapolation domain. This suggests that the neural network with small hidden units and large 

hidden layers yields not only a robust simulation model but also an accurate result.  
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(a)                                                                   (b) 

Figure 4.7. (a) Friction factors in both training and extrapolation domains by DL-based friction 
models, and (b) residual of friction factors in both training and extrapolation domains by DL-

based friction models. 
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iii. Increasing hidden layers will not increase the model complexity, and it allows better 

prediction than neural networks with less number of layers. 

iv. If a large number of hidden units is needed, a sufficient quantity of data must be 

provided to control the model complexity. 

This case studies a simple physics using a small dataset (hundreds of data points). The 

result indicates that the PDE-DL simulation can be numerically stable by the combination of a 

small number of hidden units with a large number of hidden layers. For the case with large datasets, 

there is more freedom to adjust neural networks’ hyperparameters that potentially enable deep 

learning models to capture complex physics. 

 

4.8. Summary 

The case study of the system-level fluid simulation introduces a notion of model-insight 

consistency (MIC). MIC is a screening criterion that has the potential to guide the search for the 

optimal DL model for Type I ML problems. The insight refers to the best knowledge of the 

problem of interest. It also potentially regularizes DL-based models to prevent them from 

outputting physically unreasonable values or unphysical oscillations. Guided by Occam’s razor 

principle, the optimal model should be the deep neural network with the simplest structure that 

captures the insights and the data within an uncertainty range. This case study shows that model-

insight consistency is indicative to evaluate the potential performance of deep learning models. It 

is noted that this case study is limited to modeling the fully developed laminar flow. The case study 

only includes a simple closure model with a single scaling parameter, Reynolds number. A broader 

case study is a must to characterize the usefulness of model-insight consistency in more complex 
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processes. For instance, the “insight” is subject to multiple scaling parameters and various sources 

of uncertainty such as pressure loss due to spacer grids. 
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CHAPTER 5. CASE STUDY B: REQUIREMENTS OF DATA QUANTITY 

5.1. Introduction 

We use Type I ML to demonstrate how to construct a closure relation to close two-phase 

mixture models (TMMs) [12]. TMMs are convenient to deal with the phase appearance and 

disappearance [12], and it can consistently increase the fidelity by increasing field equations. 

Figure 2.1 summarizes family of two-phase mixture models and its applicable problems. For 

example, the three-equation TMM assumes that the velocity, temperature, and pressure are 

homogeneous. It is not valid when the system includes the subcooled liquid. We can add field 

equations to extend applicable domains of mixture models. However, we need more closure 

relations to close field equations.  

Nuclear system thermal-hydraulics (NSTH) simulation involves flow regime transitions, 

and this requires distinct closure models for each flow regime. The transitions complicate the 

scaling analysis since each experiment is valid in a particular domain and includes distinct 

uncertainties. Scalabrin, Condosta & Marchi [97, 98] utilized artificial neural networks to build 

heat transfer models applied to a range of flow regimes for boiling flows. In this demonstration, 

we explore the hypothesis if the data-driven approach by using deep learning can construct the slip 

closure that is valid over a range of flow regimes in a vertical boiling channel. We start the 

investigation by using the three-equation TMM to predict boiling channel flow. 

 

5.2. Objectives 

The objectives of this case include two parts. First, we use Type I ML to demonstrate how 

to construct a closure model to close two-phase mixture models [12]. Second, we demonstrate how 

to apply the developed strategy in Section 3.4.4 to find a reliable and accurate DL-based slip 



www.manaraa.com

 

 82 

closure for nuclear system thermal-hydraulics simulation. The demonstration includes scaling 

applications that are outside the training domain. 

 

5.3. Problem formulation 

The three-equation two-phase mixture model (TMM) only requires the void fraction and 

wall friction closures for two-phase flow simulations, and it is an ideal case for testing the 

performance of machine learning methods in two-phase flow simulation because of its simplicity. 

We further assume the model form uncertainty for the wall drag can be recovered by using a DL-

based void fraction model. A BWR subchannel boiling case is selected for this task, and Table 5.1 

gives the operating characteristics. In the meanwhile, Zuber-Findlay model [25] is widely used in 

predicting the void fraction, and we implement it into the three-equation TMM to check if the DL-

based closure can be as successful as Zuber-Findlay model. 

We use TRACE to generate high-resolution data for training a DL-based slip closure. 

Figure 5.1(a) illustrates the experiment layout by TRACE including a vertical heating pipe, fixed 

flow source, pressure boundary, and ramped heater. The ramped heater is off for the first 120 

seconds, and then it gradually heats the pipe from 120 seconds to 720 seconds. The heater remains 

at its nominal power for the last 120 seconds. Figure 5.1(a) also illustrates the five locations where 

we sample the datasets for training a DL-based slip closure. Initially, we will use fixed datasets for 

DL training to see if the model can correctly predict the BWR subchannel case. In the meanwhile, 

the TMM is implemented in Dymola using Modelica language with hierarchical structures that the 

void fraction module can be switched to test the performance between drift flux and slip models. 

Figure 5.1(b) depicts the simulation layout in Dymola, and it has the same configuration as TRACE 

layout including a vertical heating pipe, fixed flow source, pressure boundary, and ramped heater.  
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Table 5.1. A BWR operating characteristics. 
Parameters Values 

Channel heat flux (J/sec-m2) 4.5436 x 105 
Outlet pressure (bar) 67.73 
Coolant mass flux (kg/sec-m2) 1925.85 
Inlet temperature (K) 550.93 
Heated diameter (m) 0.0125 
Heated length (m) 3.7084 
Flow area (m2) 1.41096 x 10-4 
TRACE nodalization 300 
TMM nodalization 48 

 

 
(a)                                                                   (b) 

Figure 5.1. (a) TRACE layout with 5 sampling locations for train the slip closure by deep neural 
networks, and (b) the experimental layout by Modelica for a BWR subchannel simulation. 
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as depicted in Figure 5.1(a). Then we will formulate the task that includes two parts. First, we will 

examine how good the DL-based slip model can work with the three-equation TMM. Second, we 

will demonstrate how to use the strategy introduced in Section 3.4.4 to achieve the well-posedness 

of two-phase simulation using the DL-based closure. 

 

The first part of this task: 

i. Manufacture the required data by running TRACE simulations using the BWR 

characteristics in Table 5.1 and modeling layout in Figure 5.1.   

ii. Collect five datasets as shown in Figure 5.1(a) from TRACE results. Then use 

Tensorflow [57] to implement closures by deep neural networks, which can figure out 

underlying correlations behind data. Finally, utilize the Adam [99] algorithm  to 

optimize DL-based closure models. 

iii. Take the DL-based slip model from Tensorflow and add the constraint to the model 

based on the assumption of the slip model. Then we implement the DL-based local slip 

model into TMM using Modelica [14] language. In the meanwhile, the Zuber-Findlay 

correlation is also implemented in TMM to ensure the results are correct. This study is 

a high-pressure steam heating case, and the Zuber-Findlay correlation has been 

successfully applied in this type of problems. Therefore, the results of TMM-DL (TMM 

with DL-based slip closure) should show the same trend as the outcomes by TMM-ZF 

(TMM with the Zuber-Findlay correlation). 

iv. Check if the results by TMM-DL is consistent with the original TRACE data Then 

check if the results show the same trend as TMM-ZF. After the comparison, we apply 

TMM-DL to predict the applications including four cases with different system 
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characters: (1) 200% power, (2) 80% mass flow rate, (3) 200% hydraulic diameter, and 

(4) 110% system pressure. The results by TMM-DL are compared to TMM-ZF and 

TRACE.   

v. Compare outlet void fractions from TRACE and TMM results with Eq. (5.1), defining 

the relative error between TMM and TRACE for evaluating the performance of PDE-

constrained forward prediction.  

  TMM TRACE

TRACE

DATA DATArelativeerror
DATA

−
=  (5.1) 

vi. Compare the calculated Reynolds number by TMM-DL with the training datasets to 

ensure that the simulation is extended into the extrapolation domain which is away 

from the original training domain.  

 

The second part of this task: 

i. Resample the training datasets by TRACE simulation for different locations with 

different total numbers of datasets including the cases of one dataset, three datasets, 

five datasets, and 300 datasets. 

ii. Use principal component analysis (PCA) to analyze the representability of each dataset 

as defined in Section 3.4.4, and construct the DL-based closures by deep neural 

networks for the four cases in the previous step. 

iii. Assign a small uncertainty to DL-based models and observe their responses. According 

to the Hardarmad’s philosophy [85], we assume the model should continuously depend 

on the data meaning that a small change in the data should only result in a small change 

in the outputs. 
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The above steps show how to determine the required number of datasets that can 

accomplish a reliable and accurate two-phase simulation using DL-based fluid dynamics closures. 

 

5.4. Implementation 

5.4.1. Implementation of the three-equation mixture model 

We implement the three-equation TMM into the Modelica Standard Fluid Library [100]. 

Eq. (5.2)-(5.4) give the mass-energy-momentum conservation equation where ρ, u, h, and v, are 

the mixture density, internal energy, enthalpy, and velocity. The l, v, A, P, α, τw, and Pw denote the 

liquid, vapor, area, pressure, void fraction, wall shear, and wetted perimeter. Eq. (5.5)-(5.6) are 

two-phase correction terms for the internal energy equation. Eq. (5.7) is the two-phase correction 

for the momentum equation. The mixture model requires a closure model for wall friction, but we 

do not implement two-phase correction terms for it due to the use of a fixed mass flow rate source. 

We further assume that there is no heat transfer, and the heat directly deposits into the fluid. As a 

result, we only need to develop the DL-based void-quality-slip closure to close the TMM, and we 

refer to this model as the TMM-DL 
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( )2
2
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z
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    (5.7) 

Eq. (5.8) gives the essential wall friction correlation by the Swamee-Jain approximate 

solution for the Colebrook-White equation [101] where f, ε, Dhyd, and Re2Φ are the friction factor, 

surface roughness, hydraulic diameter, and two-phase mixture Reynolds number (Re2Φ).  
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5.4.2. Implementation of slip closures 

5.4.2.1. Implementation of classic slip closure 

The Zuber-Findlay correlation [25] is a drift-flux void fraction model that is very successful 

to predict high-pressure steam flow. We code it into TMM to ensure that the implementation is 

correct. Eq. (5.9) shows the Zuber-Findlay correlation where the drift velocity (𝑣𝑣𝑔𝑔𝑖𝑖) is given by 

Eq.(5.10). It can work with or without flow patterns [30], and it is valid when the total volumetric 

flux is significantly smaller than the drift velocity [26]. Under high pressure steam conditions, the 

distribution parameter (C0) is suggested to be 1.13 [102]. However, C0 still needs to be adjusted 

under different system characteristics such as pressure, geometry, and perhaps mass flow rate [1]. 

We refer to the two-phase mixture model using the Zuber-Findlay correlation as TMM-ZF. 
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5.4.2.2. Implementation of deep NN-based slip closure 

Eq. (5.11) shows the void-quality-slip closure [1] where x is the fluid quality. The TMM 

requires a slip model that is the ratio of vg to vl to solve for void fraction distributions. We construct 

DL-based slip models using deep FNNs (DFNNs) with a four-layer structure. Eq. (5.12) gives the 

formulation of slip models with three input parameters: the local pressure, local two-phase 

Reynolds number, and vapor Reynolds number. Eq. (5.13) defines the local two-phase Reynolds 

number [103] where G2Φ is the two-phase mass flux and μ is the dynamic viscosity. Eq. (5.14) 

defines the vapor Reynolds number. FDNNs use the sigmoidal activation functions with five 

hidden units in each hidden layer, and the model is implemented by Tensroflow [57] using the 

Adam [99] optimizer. 
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Table 5.2 gives parameters of the DL-based slip closure with the activation function, 

sigmoid. Eq. (5.15) shows the structure of the first hidden layer in the DL model where j is the jth 

hidden unit and i is the ith training input. Eq. (5.16) gives the second and third hidden layer where 

k indicates the layer number. Starting from the second hidden layer, the total number of inputs 

depends on the number of hidden units from the previous layer. Eq. (5.17) shows the output layer 

of the DFNN which is a linear combination of the hidden units from the last hidden layer. 
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Table 5.2. Deep neural networks’ hyperparameters. 
Parameters Values 

Activation function Sigmoid 
Number of HU in each HL 5 
Number of HL 3 
Number of inputs 3 
Number of outputs 1 
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1 1 1
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= +∑x     (5.15) 

5

1 1,
1

( ) ( )kj k kji k i kj
i

HU HU sigmoid w HU b− −
=

= +∑    (5.16) 

5

1 1,
1

( )out K oji K i o
i

DFNN HU w HU b− −
=

= +∑    (5.17) 

5.4.3. Implementation of two-phase flow modeling by Type I ML 

Algorithm CHAPTER 5.1 shows the procedure of utilizing Type I ML to develop slip 

closures. Training data are obtained from the two-fluid model (TFM) [1]. We assume that there 

are invisibly tiny bubbles moving with the liquid when single-phase flows present. Therefore, we 

need to constrain the DL-based slip to have the minimum output equal to one. Then we implement 

the DL-based slip closure into the TMM for predictions. Eq. (5.18) defines the relative error to 

evaluate the performance of Type I ML. 
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Algorithm CHAPTER 5.1 Type I ML for the system-level TFS. 
Input: training inputs (P, 2Re Φ , and Rev ) by the TFM (element 3 in Figure 3.7) 

            training target ( g lS v v= ) (element 4 in Figure 3.7) 
Output: TMM with DL-based slip closure for predictions (element 7 in Figure 3.7) 
1: for i < maximum_iteration do (element 5 in Figure 3.7) 
2:    // Build a slip model using DFNNs 
3:    2( ,Re ,Re )vS P DFNNΦ ←             
4:    for all inputs ∈ training datasets do        
5:       Update the parameters for each layer in DFNN with inputs     
6: Constrain the value of DFNN based on the model assumption: (element 6 in Figure 3.7) 
         ( )max 1,DFNN DFNN←   
7: Solve TMM with DL-based slip closure: (element 7 in Figure 3.7) 

         
1

2
11 ( , Re , Re )g

v
l

x S R
x

ρ
α

ρ

−

Φ

 −
= + 
 

 

 

TMM TFM
r

TFM

α αε
α
−

=      (5.18) 

 

5.5. Manufacturing synthetic data for Type I ML 

We use the two-fluid model implemented by USNRC TRACE [10] to provide the synthetic 

data for building the void-quality-slip closure. We generate one baseline training dataset using the 

boiling channel characteristics given in Table 5.3. Then we create another eight validating datasets 

with distinct system characteristics. 

 
Table 5.3. Characteristics of the boiling channel. 

Parameters Values 
Channel heat flux (J/sec-m2) 4.5436 x 105 
Outlet pressure (bar) 67.73 
Coolant mass flux (kg/sec-m2) 1925.85 
Inlet temperature (K) 550.93 
Heated diameter (m) 0.0125 
Heated length (m) 3.7084 
Flow area (m2) 1.41096 x 10-4 
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5.6. Results analysis by using TMM-DL to predict various system characteristics 

5.6.1. Using TMM-DL to predict various system characteristics 

Figure 5.2 and Figure 5.3 depict the void fraction and slip factor comparisons between the 

TMM-DL and TFM at the outlet for various system characteristics. When the system reaches the 

steady state at 720 seconds, a heater maintains a constant heat flux. Figure 5.2 also shows the 

results by TMM-ZF. Without tuning the distributed parameter, TMM-ZF yields a substantial 

discrepancy when we compare the results to TFM. 

For the baseline case in Figure 5.2, the relative error between the TMM-DL and TFM is 

6.8% at the steady state. As we double the power or reduce the power by half, the relative errors 

were below 5%. When we increase the mass flow rate (MFlow) by 20%, the relative error becomes 

8.5%. However, the error goes down to 4.7% as we decrease the MFlow to 80%. The relative error 

is 0.7% for the case with the hydraulic diameter (Dhyd) increased by the factor of 2, but the slip 

factor deviates about 10% from TFM results. The error becomes 3.2% when we set the Dhyd equal 

to half of the baseline case. For the 110% pressure case, the relative error is 4.2%. Finally, the 

significant error (11.5%) occurs for the 95% pressure case. 

 

 

 

 

 



www.manaraa.com

 

 92 

 
(a)     (b)     (c) 

 
(d)     (e)     (f) 

 
(g)     (h)     (i) 

Figure 5.2. Comparison of void fraction at the pipe outlet for TFM, TMM-DL, and TMM-ZF for 
various system characteristics such as (a) the baseline, (b) 200% baseline power, (c) 50% 

baseline power, (d) 120% baseline mass flow rate (MFlow), (e) 80% baseline MFlow, (f) 200% 
baseline Dhyd, (g) 50% baseline Dhyd, (h) 110% baseline pressure, and (i) 95% baseline pressure. 
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(a)     (b)     (c) 

 
(d)     (e)     (f) 

 
(g)     (h)     (i) 

Figure 5.3. Comparison of slip factor at the pipe outlet between TFM and TMM-DL for various 
system characteristics such as (a) the baseline, (b) 200% baseline power, (c) 50% baseline 

power, (d) 120% baseline mass flow rate (MFlow), (e) 80% baseline MFlow, (f) 200% baseline 
Dhyd, (g) 50% baseline Dhyd, (h) 110% baseline pressure, and (i) 95% baseline pressure. 

 

Table 5.4 gives the relative errors of void fractions between the TFM and TMM-DL at the 

steady-state. The case with 200% baseline Dhyd yields the minimum relative error while the case 

with 95% baseline pressure causes the maximum error. Figure 5.4 depicts the inputs, Re2Φ and 

Rev, of the DL-based slip closure for each test at a different time to ensure that the application is 

beyond the training domain. At the steady state, the Re2Φ for all cases are outside the training 

domain. However, the steady-state Rev numbers for most cases are within the training domain 
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except for the 200% baseline power and 95% baseline pressure cases. Figure 5.4 indicates that the 

input set (Re2Φ, Rev) are beyond the training dataset. Therefore, the DL-based closure has scaling 

capability for this problem. 

 

Table 5.4. Relative errors of void fractions between TMM-DL and TFM results. 
Case Relative Errors of Void Fraction 
Baseline -6.8% 
200% Baseline Power -4.7% 
50% Baseline Power -4.2% 
120% Baseline MFlow -8.5% 
80% Baseline MFlow -4.7% 
200% baseline Dhyd -0.7% 
50% baseline Dhyd -3.2% 
110% Baseline Pressure -4.2% 
95% Baseline Pressure 11.5% 

 

 
(a)                                                                   (b) 

Figure 5.4. Comparison of the inputs, (a) Re2Φ and (b) Rev, for the DL-based slip model with 
simulations under different system characteristics including the baseline, 200% baseline power, 

50% baseline power, 120% baseline mass flow rate (MFlow), 80% baseline MFlow, 200% 
baseline Dhyd, 50% baseline Dhyd, 110% baseline pressure, and 95% baseline pressure to ensure 

that the applications is beyond the training domain. 
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5.6.2. Exploring DL uncertainty by different data quantities 

Inferring models from data belongs to inverse problems which are ill-posed. We use the 

recovery factor defined in Section 3.4.4 to explore whether a DL-based closure satisfies the data 

quantity requirement. Table 5.5 gives the recovery factors by Eq. (3.8) for cases with various 

numbers of training datasets. The recovery factor implies how good the selected training datasets 

can represent the reference data which include 300 datasets in this problem. Table 5.5 indicates 

that the one dataset case does not represent the initial training datasets well. 

 
Table 5.5. Recover factors for different training datasets of inputs and target. 

 Pressure ReMix Re Slip Factor 
1 Dataset 0.99 0.18 0.94 0.29 
3 Datasets 0.99 0.99 0.99 0.71 
5 Datasets 1.00 0.99 1.00 0.88 

300 Datasets 1.00 1.00 1.00 1.00 
 

To explore which model is well-posed, we add uncertainties to the datasets in Table 5.5, 

and we observe the response of the outputs from DL models. We sample 1000 random variables 

from N(0.01, 0.001). Then we generate the new inputs with uncertainties by Eq. (5.19) where x is 

the input vector and ε is random numbers. Since the training data are from the transient problem, 

the following figures will show two cases: (i) figures for all spatial cells at steady state, and (ii) 

figures for the outlet cell (cell 300) for all time steps. We compare the mean square error and 

relative error between the model with training inputs and the model with uncertain inputs. 

 (1 )new ε= +x x  (5.19) 

Figure 5.5(a) shows the mean square error (MSE) of four DL-based slip models trained by 

different numbers of datasets for all spatial cells at the steady state. Figure 5.5(b) depicts the MSE 

for the outlet cell for all time steps. Both figures indicate that the DL-based slip model by one 

dataset yields the largest error versus other cases. 
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(a)                                                                   (b) 

Figure 5.5. Mean square errors of all DL-based slip models by different training dataset by 
comparing (a) all vertical cells at steady state and (b) outlet cell (cell 300) for all time steps. 

 

Figure 5.6 shows the 3D relative error plots of all DL-based slip models at steady state, 

and Figure 5.7 depicts the 3D relative error plots of the outlet cell for all time steps. From these 

figures, when we assign a small uncertainty (1%) to the inputs, the DL-based slip model trained 

by one dataset results in a large relative error (~35%) to the training data. Therefore, we consider 

that the DL-based slip model trained by one dataset is not well-posed. 

 

 

 

0 50 100 150 200 250 300

Number of Training Datasets

10 -4

10 -3

10 -2

10 -1

10 0

M
S

E

MSE Plot for all models at 840 seconds

0 50 100 150 200 250 300

Number of Training Datasets

10 -4

10 -3

10 -2

10 -1

10 0

M
S

E

MSE Plot for all models at cell 300



www.manaraa.com

 

 97 

  
(a)                                                                        (b) 

 

  
(c)                                                                       (d) 

Figure 5.6. 3D plot showing the relative error of all spatial cells at steady state between DL-
based slip models using the training inputs and the inputs with uncertainties for the DL-based 

slip model trained by (a) 1 dataset, (b) 3 datasets, (c) 5 datasets, and (d) 300 datasets. 
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(a)                                                                       (b) 

  
(c)                                                                       (d) 

Figure 5.7. 3D plot showing the relative error of outlet cell (cell 300) for all time steps between 
DL-based slip models using the training inputs and the inputs with uncertainties for the DL-
based slip model trained by (a) 1 dataset, (b) 3 datasets, (c) 5 datasets, and (d) 300 datasets. 

 

Figure 5.8-Figure 5.10 depict the void fraction comparison at pipe outlet for TMM-DL 

trained by one dataset, TMM-DL trained by five datasets, and TFM for three different system 

characteristics including original experiment conditions, 200% hydraulic diameter, and 200% 

power. Although one-dataset TMM-DL agrees with the baseline, its prediction is unstable because 

it performs worse than five-dataset TMM-DL for 200% hydraulic diameter. Furthermore, one-

dataset TMM-DL fails the PDE simulation for the 200% power case. Whenever the uncertainty 

for inputs exceeds its tolerance limit, the TMM-DL cannot make a successful simulation.  
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(a)                                                                   (b) 

Figure 5.8. Comparison of outlet void fractions at the outlet for TMM-DL trained by one dataset, 
TMM-DL trained by five datasets, and TFM with baseline conditions. 

 

  
(a)                                                                   (b) 

Figure 5.9. Comparison of outlet void fractions at the outlet for TMM-DL trained by one dataset, 
TMM-DL trained by five datasets, and TFM with original experiment parameters but increasing 

the hydraulic diameter by factor of 2. 

  
(a)                                                                   (b) 

Figure 5.10. Comparison of outlet void fractions at the outlet for TMM-DL trained by one 
dataset, TMM-DL trained by five datasets, and TFM with original experiment parameters but 

increasing the power by factor of 2. 
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5.7. Lessons learned 

Type I ML can achieve the cost-effective development of the DL-based slip closure that is 

ubiquitous across flow regimes from the single-phase flow to flow boiling. The information of 

flow regime transitions implicitly inherits from the data. For this case study, the DL-based slip 

closure exhibits predictability beyond the training domain. Specifically, the mixture model can 

make predictions within a reasonable uncertainty range by comparing the results to the TFM for 

various system characteristics outside the training domain. However, further investigations are 

needed for a broader range of system conditions as well as for datasets generated by experiments. 

Presently synthetic data are limited to the TRACE simulation that is based on certain assumptions 

and models. It is noted that caution must be exercised in applying the synthetic data because they 

may have been biased by the previous calibration of models. The analysis conducted for the 

example of the TMM-DL modeling suggests that the performance of data-driven models may be 

affected by model biases. Therefore, the evaluation may be hampered by various sources of 

uncertainties including model forms and numerical errors. For instance, the drag force model in 

the TRACE TFM is inherited from the drift-flux model [10], whereas the tested mixture model is 

based on the phasic velocity slip formulation. 

 

5.8. Summary 

The two-phase flow case study also demonstrates how to employ the hypothesis and 

recovery factor defined in Section 3.4.4 with Type I ML framework. The case study suggests that 

RF has the potential to be a screening criterion to find a robust DL model that satisfies the 

requirement of well-posedness. The hypothesis states that the output of DL models should 

continuously depend on the inputs. This means a small change in the inputs should only result in 
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a small change in the output. Otherwise, the DL-based closures become ill-posed and cannot be 

used for Type I ML problems. It is found that the DL-based slip model (closure relation) exhibits 

prediction beyond the training dataset. Specifically, the three-equation two-phase mixture model 

can predict test cases within reasonable uncertainty ranges. However, further investigations are 

needed for a broader range of system conditions as well as for training data collected from 

experiments. 
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CHAPTER 6. CASE STUDY C: FRAMEWORK COMPARISON 

6.1. Introduction 

The heat conduction case study is formulated to demonstrate how to employ Type I, Type 

II, Type III, and Type V ML to build ML-based thermal conductivity and to compare results by 

each framework. Chanda et al. used ANN with genetic algorithm [104] to solve inverse modeling 

for heat conduction problems. In this work, deep learning (DL) [4] is selected as the ML 

methodology in this task. Principally, any neural network (NN) with more than two layers (one 

hidden layer with an output layer) is considered to be DL [46]. Hornik [44] proved that multilayer 

NNs are universal approximators and can capture the properties of any measurable information. 

This capability makes DL attractive for the closure development in thermal fluid simulation. 

Notably, we implement NN-based thermal conductivity by FNNs and convolutional neural 

networks (CNNs) to evaluate the performance of closure relations by distinct NNs. 

 

6.2. Objectives 

Type III ML is first defined and introduced in this dissertation. The first objective is to 

demonstrate how to use Type III ML to achieve data-driven modeling. The results are compared 

to Type-I, Type II, and Type-V ML to show the advantage of Type III ML. The second objective 

is to show that the solution is numerically stable while solving the PDE with CNN-based closure 

models. 

 

6.3. Problem formulation 

We formulate the synthetic task using a 2D (two-dimensional) heat conduction model 

given by Eq. (6.1) where k(T) is a nonlinear thermal conductivity. To generate training data, Eq. 
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(6.2) shows a temperature-dependent model for k(T) where c, σ, and μ are constant parameters. 

Table 6.1 gives two parameter sets (baseline and prior sets) to generate data. While demonstrating 

ML frameworks, k(T) becomes NN-based thermal conductivity. 

 

( ) ( ) 0T Tk T k T
x x y y

 ∂ ∂ ∂ ∂  + =  ∂ ∂ ∂ ∂   
    (6.1) 

( )
( )2

22

2

Tck T e
µ
σ

σ π

−
−

=     (6.2) 

 
Table 6.1. Two parameter sets for the thermal conductivity model. 

Dataset c (W/m) σ (K) μ (K) 
Baseline set for producing synthetic data 7.2x104 300 1200 
Prior set for producing inputs required by Type II ML 7.2x104 600 2100 

 

Two numerical experiments are designed to emulate IETs and SETs for manufacturing 

synthetic data by solving Eq. (6.1) using parameters sets in Table 6.1. IETs provide field data, for 

instance, 2D temperature fields by an infrared camera. SETs offer global data such as a 1D 

measurement by thermocouples. Synthetic data are used for training and validating NN-based 

thermal conductivity. Type I ML can only use SET data because of a scale separation assumption. 

Type II ML can only use SET data because the goal is to improve the prior thermal conductivity 

by the baseline. Type III and Type V ML use field data. We compare Type I and Type II ML using 

training data from SETs. Then Type III and Type V ML are compared by field data from IETs. 

 

6.4. Manufacturing synthetic data for ML frameworks 

Numerical solutions assume piecewise-linear temperature between grids [105] with 

Dirichlet type boundaries. We further assume conductivity profiles are also piecewise-linear 

between mesh points.  
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6.4.1. Manufacturing IET data 

IETs are measurements of temperature fields. Synthetic IET data are generated by Eq. (6.1) 

with the baseline set in Table 6.1. Figure 6.1 illustrates the layout of IET experiments with four 

constant boundary temperatures. We change Twest for various observations and fix the boundary 

temperature (1300K) at the east side. The Tnorth and Tsouth are linearly dependent on the west 

boundary condition. We prepare three training datasets by including distinct data quantities and 

three validating datasets by changing Twest. Table 6.2 gives the metadata of each training or 

validating dataset. All observations are uniformly sampled within a given temperature range. 

 

 
Figure 6.1. Schematic of integral effects tests (IETs) for measuring temperature fields. 

 

Table 6.2. Summary of IET training and validating datasets. 
Dataset Data Quantity Temperature Range at Twest Description 

T1 11 observations [1000K, 1100K] Training dataset  
T2 100 observations [1000K, 1100K] Training dataset  
T3 1000 observations [1000K, 1100K] Training dataset  
P1 1000 observations [1000K, 1100K] Validating dataset  
P2 1000 observations [900K, 1000K] Validating dataset  
P3 1000 observations [800K, 900K] Validating dataset  

 

6.4.2. Manufacturing SET data 

SETs are global measurements by thermocouples. Figure 6.2 depicts the layout of SETs 

for obtaining mean temperature and heat conductivity data. A heater is on top of the sample to 

Tsouth

Tnorth

Twest Teast
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maintain a constant temperature (TH). Thermal insulation is installed on the outside surface. The 

coolant at the bottom removes the heat with a constant heat transfer coefficient. Eq. (6.3) calculates 

the temperature profiles within the sample using the parameter sets in Table 6.1. Eq. (6.4) 

calculates the observed heat conductivity (kobs), and the mean temperature is obtained by arithmetic 

averaging TH and TC. 

 

 
Figure 6.2. Schematic of separate effects tests (SETs) for measuring thermal conductivity as the 

function of sample’s mean temperature. 
 

 ( ) 0Tk T
x x
∂ ∂  = ∂ ∂ 

 (6.3) 

( )H C
obs C coolant

T Tk h T T
H
−

= −      (6.4) 

We generate two training datasets with two coolant temperatures to explore the effect by 

different data qualities. Table 6.3 shows the metadata of SET datasets. A large temperature 

gradient across the testing sample increases the nonlinearity of temperature profiles. For each 

training set, we uniformly sample 41 TH from Eq. (6.5) to keep mean temperatures in SETs within 

the same range as IETs. 

H = 0.01m

Insulation

Coolant with constant temperature (Tcoolant = 800K or 900K) 
and heat transfer coefficient (h = 107 W/m2/K)

TH

TC

Testing sample

HeaterInsulation
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Table 6.3. Summary of SET training datasets. 
Dataset Data Quantity Data Quality Tcoolant (K) Description 

S1 41 observations Low 800 Training dataset 
S2 41 observations High 900 Training dataset 

 

( ) ( ),max ,min ,max ,min, 2 , 2H H IET coolant IET coolantT T T T T T= − −    (6.5) 

 

6.5. Implementation 

6.5.1. Implementation of the heat conduction task by different ML frameworks 

We present Type I ML in Algorithm 6.1. SET data are generated by Eq. (6.3) with the 

baseline set in Table 6.1. Inputs and targets are temperatures and thermal conductivities. After the 

training, FNN-based thermal conductivity is implemented in Eq. (6.1) for predictions. 

Algorithm 6.1. Type I ML for 2D heat conduction problem with Dirichlet BC. 
Input: Training inputs (Tdata, element 3 in Figure 3.7) and training targets (kdata, element 4 in 
Figure 3.7) from the SET (element 1 in Figure 3.7) 
Output: Temperature fields for predictions (element 7 in Figure 3.7) 
1: for all epochs < maximum_epoch do (element 5 in Figure 3.7) 
2:       // Build a conductivity model using FNNs 
3:      ( ) ( )k T FNN T←  
4:       for all inputs ( , )data dataT k  ∈  training datasets do        
5:             Update hyperparameters for each layer in FNNs 
6: Implement ( )k T  into Eq. (6.1) (element 7 in Figure 3.7) 
7: Solve Eq. (6.1) with Dirichlet boundaries (element 7 in Figure 3.7) 

 

Algorithm 6.2 outlines the application of Type II ML. SET data are generated by Eq. (6.3) 

with prior and baseline sets in Table 6.1. Targets are thermal conductivities calculated by the 

baseline set. However, inputs are mean temperatures by the prior set. After the training, FNN-

based thermal conductivity can be queried by new input temperature fields from solutions with 

new boundary conditions. Once thermal conductivities are obtained, they are implemented as fixed 
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fields into Eq. (6.1) to obtain temperature profiles for predictions. Therefore, Type II ML first 

solves the heat conduction equation with an initially guessed parameter set, and then improves the 

solution by the FNN-based closure. 

 

Algorithm 6.2. Type II ML for 2D heat conduction problem with Dirichlet BC. 
Input: Training inputs (Tprior) (element 4 in Figure 3.8) and training targets (kbaseline, element 5 
in Figure 3.8) from the SET (element 2 in Figure 3.8) 
Output: Temperature fields for predictions (element 10 in Figure 3.8) 
  1: Solve Eq. (6.3) with the prior set in Table 6.1 (element 1 in Figure 3.8) 
  2: Use temperature profiles (Tprior) as inputs for training NNs (element 4 in Figure 3.8) 
  3. for all epochs < maximum_epoch do (element 6 in Figure 3.8) 
  4:       // Build surrogates for thermal conductivities using FNNs 
  5:      ( ) ( )k T FNN T←  
  6:       for all inputs ( , )prior baselineT k  ∈  training datasets do        
  7:             Update weights and biases for each layer in FNNs 
  8: Solve Eq. (6.1) again with the prior set in Table 6.1 and new boundaries (element 7 in 
  9: Figure 3.8) 
10: Query ( )priork T ′  by new temperature fields ( priorT ′ ) (element 8 in Figure 3.8) 
11: Implement the thermal conductivities as fixed fields into Eq (6.1), and solve the equation to 
12: obtain temperature profiles for predictions (element 9 in Figure 3.8) 

 

Algorithm 6.3 outlines the procedure of Type III ML. IET field data are generated by Eq. 

(6.1) with the baseline set in Table 6.1. Targets are baseline temperature fields. Inputs are the 

solution by Eq. (6.1) with NN-based thermal conductivity. During the training, inputs are 

iteratively updated due to the change of weights and biases in NNs. After the training, the model 

is ready for predictions. Type III ML ensures data-model consistency because PDEs are involved 

in the training. 
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Algorithm 6.3. Type III ML for 2D heat conduction problem with Dirichlet BC. 
Input: Training targets (Tbaseline, element 3 in Figure 3.9) and training inputs (TPDE, element 4 in 
Figure 3.9) 
Output: Temperature fields for predictions 
1: for all outer < maximum_outer_iteration do  
2:       for all epoch < maximum_epoch do (element 5 in Figure 3.9) 
3:             // Build conductivity models using both FNNs and CNNs 
4:             ( ) ( ), ( )k T FNN T CNN T←  

5:             for all inputs PDET  ∈ PDE solutions do        
6:                   Update hyperparameters for each layer in FNNs and CNNs 
7:       Solve Eq. (6.1) using NN-based thermal conductivity for predictions (element 6 in  
8:       Figure 3.9) 

 

Algorithm 6.4 shows the implementation of Type V ML using IET data. The data are 

generated by Eq. (6.1) with prior and baseline sets in Table 6.1. Inputs are temperate profiles by 

the prior set. Outputs are the discrepancies (δT) between prior and baseline temperature fields. 

After the training, discrepancy fields are queried by new temperature fields with the prior set and 

new boundary conditions. Then the improved temperature fields are obtained by adding 

discrepancy fields into prior temperature fields. Therefore, the predicted temperature fields by 

Type V ML are not constrained by the governing equation. 
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Algorithm 6.4 Type V ML for 2D heat conduction problem with Dirichlet BC. 
Input: baseline temperature (Tbaseline) and training inputs (Tprior)  
Output: Temperature fields for predictions 
  1: Solve Eq. (6.1) with the prior set in Table 6.1  
  2: Use temperature profiles (Tprior) as inputs for training NNs 
  3: Compute discrepancies between baseline temperature fields (Tbaseline) and prior temperature    
  4: fields (Tprior) 
  5.       baseline priorT T Tδ = −  
  6. for all epochs < maximum_epoch do 
  7:       // Build surrogates for thermal conductivities using FNNs 
  8:      ( )priorT FNN Tδ ←  

  9:       for all inputs ( , )priorT Tδ  ∈ training datasets do        
10:             Update weights and biases for each layer in FNNs 
11: Solve Eq. (6.1) again with the prior set in Table 6.1 and new boundaries 
12: Query ( )priorT Tδ ′  by new temperature fields ( )priorT ′  

13: Improve temperature profiles for predictions by ( )priorT Tδ ′  

 

Eq. (6.6) defines the root-mean-square error (RMSE) to evaluate the performance of each 

ML framework where i denotes the ith observation, N is the total number of data points in the ith 

observation, and j presents the jth solution. For each validating dataset, we calculate mean RMSE 

by using arithmetic averaging. 

( )2

, ,Model j data j
j

i
i

T T
RMSE

N

−
=
∑

    (6.6) 

6.5.2. Implementation of NN-based thermal conductivity model 

6.5.2.1. FNN-based thermal conductivity model 

We use FNNs and CNNs to reconstruct thermal conductivity from training data. Eq. (6.7) 

gives the formulation of FNN-based thermal conductivity where T, x, and i are the temperature, 

input vector, and ith training input. The sigmoidal activation function, 1/(1+e-x), is selected. Eq. 

(6.8) shows the structure of the first hidden layer (HL) where j is the jth hidden units (HUs) and Nin 
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is the total number of inputs from the input layer. The weight (w) and bias (b) are parameters to be 

learned based on training data. Eq. (6.9) presents the general structure of HLs where k and NHUk 

are the layer number and total number of HUs in the kth layer. Starting from the second HL, the 

number of inputs depends on the quantity of HUs from the previous HL. Eq. (6.10) shows the 

output layer as a linear combination of HUs from the last HL where L is the total layer number of 

FNNs. For this demonstration, we use three-layer FNNs with ten HUs in each HL, and we fix this 

structure for all types of ML learning frameworks. 

( )( ),DNN i ik FNN with x T= =x         (6.7) 

( )1 1 1
1

inN

j ji i j
i

HU sigmoid w x b
=

 
= + 

 
∑x                                            (6.8) 
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∑x         (6.9) 
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= +∑x         (6.10) 

6.5.2.2. CNN-based thermal conductivity model 

Figure 6.3 depicts the architecture [47] of CNN-based thermal conductivity that includes 

three convolutional layers and three fully connected layers. We use the ReLU [51] activation for 

layers in CNNs to accelerate the training. Inputs are temperature fields. After the first 

convolutional layer, eight feature maps are generated, and each feature map detects the patterns 

from temperature fields. The second convolutional layer takes inputs from the previous layer, and 

it outputs 12 feature maps. The third convolutional layer receives inputs from the previous layer, 

and it delivers 24 feature maps to fully connected layers. Finally, we obtain thermal conductivity 

fields from CNN’s outputs. 
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Figure 6.3. Architecture of CNN-based thermal conductivity (adopted after LeCun) [47]. 

 

Learning is an optimization process, and we need to define a cost function based on distinct 

types of data to inform ML algorithms to tune NN hyperparameters. Eq. (6.11) defines the cost 

function where N, yi,data, and yi,model are the total number of training data, ith training data, and ith 

model solution. To prevent overfitting, we add a regularization term in Eq. (6.11) where i, and NL 

denote the ith layer and total layer number. λ is the regularization strength, and W is the matrix of 

total weights in ith layer. We implement NN-based thermal conductivity using Tensorflow [57] 

which is the DL framework developed by Google. Weights and biases of NNs are tuned based on 

data using the Adam [99] algorithm. 
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6.6. Results analysis 

6.6.1. Comparing results by Type I and Type II ML using SET data 

We define the notation NN-A as NNs trained by a dataset A where NNs can be either CNNs 

or FNNs. Figure 6.4 depicts the averaged RMSE by comparing validating datasets to Type I and 

Type II ML results. When we used the low-quality dataset (S1) to train FNNs, both Type I and 

Type II ML provided poor predictions. However, Type II ML does not query values from FNN-

Input layer
(Temperature field 

with 41x41 mesh points)

Output
(Conductivity field 

with 41x41 mesh points)

1st Convolution layer
with 8 feature maps 
and 41x41 mesh points

2nd Convolution layer 
with 12 feature maps 
and 21x21 mesh points

3rd Convolution layer
with 24 feature maps 
and 11x11 mesh points

Fully connected layers
(2 hidden layers and 1 output layers)
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based thermal conductivity. The error does not accumulate during each iteration while solving 

PDEs. When predictions are away from the training domain, Type II ML exhibits better 

performance than Type I ML. When we trained FNNs by high-quality dataset (S2), both 

frameworks reduce errors in predictions, but Type I ML displays better predictability than Type II 

ML. 

 

 
Figure 6.4. Averaged RMSE by comparing the validating datasets, P1, P2, and P3, to Type I and 

Type II ML results using the FNN with the training datasets, S1 and S2. 
 

6.6.2. Comparing the results by Type III and Type V ML using IET data 

Figure 6.5 illustrates the averaged RMSE by comparing validating datasets to Type III and 

Type V ML results. Figure 6.5(a) shows results by using Type III ML with FNN-based thermal 

conductivity. The results are improved as we increase the quantity of training data. Figure 6.5(b) 

indicates that Type III ML with the CNN-T3 yields a lower error than the FNN-T3 result. However, 

CNN-based closures require more training data than FNN-based closures to exhibit good 

predictability. CNNs are efficient in the training. We performed simulations on NVIDIA TITAN 

Xp, and the training of Type III ML with the FNN-T3 took approximately 43.7 hours. On the 
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contrary, Type III ML with the CNN-T3 only took about 1.2 hours to achieve a converged solution. 

Figure 6.5(c) presents the averaged RMSE by Type V ML with FNNs. The RMSE cannot be 

improved with increasing the quantity of training data. The results imply that targets do not 

uniquely depend on inputs. Bishop [106] recognized this issue and solved it by mixture density 

networks. 

 

 
(a)     (b)     (c) 

Figure 6.5. Averaged RMSE by comparing the validating datasets, P1, P2, and P3, to the results 
obtained by (a) Type III ML using the FNN, (b) Type III ML using the CNN, and (c) Type V 

ML using the FNN with training datasets, T1, T2, and T3. 
 

6.7. Lessons learned 

When SET data are employed to Type I and Type II ML, the data quality strongly affects 

the accuracy of predictions. Type I ML requires one to solve PDEs and query values from FNN-

based closures for each iteration. If the data quality is low, errors accumulate in Type I ML, and 

Type II ML is more appropriate because Type II solves PDEs with fixed-field closures. When the 

data quality is high, Type I ML exhibits better performance than Type II ML. Type III ML trains 

a closure model that is embedded in PDEs by using IET data. The results are more accurate than 

Type I and Type II using SET data. Type III training requires more data than the other two 

frameworks. When CNNs are used in Type III ML, the increase of training data significantly 
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reduces the error in predictions. In the meanwhile, CNNs can accelerate the training in Type III 

ML by about 36 times faster than the training using FNNs. Type V ML results show an 

identifiability issue that indicates the selected input is not appropriate or different NNs should be 

used such as mixture density networks. 

 

6.8. Summary 

The case study indicates a preference for Type III ML. It can effectively utilize the field 

data, potentially generating more robust predictions than Type I, Type II, and Type V ML. Table 

6.4 summarizes the properties of each ML framework based on the lessons learned in this study. 

The data quality needs to be high when NN-based closures are iteratively queried by Eq. (6.1). 

When the framework uses training data by IETs, the data quantity should be high to achieve 

predictions. The physics is conserved when the solution is constrained by Eq. (6.1). In this case 

study, Type V ML may require more input features than other ML frameworks. The selected input 

feature for Type V ML is insufficient to make the output uniquely depend on it. 

 

Table 6.4. Properties of each ML framework for the heat conduction demonstration. 
 Type I ML Type II ML Type III ML Type V ML 
Training data type SET SET IET IET 
Data quantity requirement Low Low High High 
Data quality requirement High Low High Low 
Are NN-based closures 
iteratively queried while 
solving Eq. (6.1)? 

Yes No Yes No 

Are solutions constrained 
by Eq. (6.1)? Yes Yes Yes No 

Note 

Type I is 
preferable 
when SET 

data quality is 
high. 

Type II is 
preferable 
when SET 

data quality is 
low. 

CNN-based 
closures are 
preferable. 

There is an 
identifiability 
issue for the 

training. 
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CHAPTER 7. CASE STUDY D: TURBULENT FLOW MODELING 

7.1. Problem formulation 

Reynolds-averaged Navier-Stokes (RANS) equations obtained by temporal averaging of 

Navier-Stokes equations require Reynolds stress to close the model. The linear eddy viscosity 

model (LEVM) has been widely used to represent Reynolds stress that leads to various mechanistic 

turbulence models [21] such as the Spalart-Allmaras, k-ε, and k-ω models. The models have been 

extensively studied, evaluated and calibrated for different flow characteristics with different 

degrees of accuracy. Consequently, performance of different models is limited in their calibration 

domain and exhibit high uncertainty in prediction regimes [86, 107]. 

With advanced computing power, “first-principles” DNS and high-resolution LES have 

been used to generate high-fidelity turbulence data to inform turbulence modeling. Although not 

so named, Type I and Type II ML previously have been formulated and applied for data-driven 

turbulence modeling; e.g., in the work of Zhang & Duraisamy [18] and Ling, Kurzawski & 

Templeton [19]. Their implementation is analyzed with respect to the proposed frameworks in 

Sections 3.2.2 and 3.2.3, respectively. 

 

7.2. Objectives 

The objectives are to show how to employ Type I and Type II ML for data-driven 

turbulence modeling. Although Type I and Type II ML have been previously demonstrated in the 

literature, the reference work does not present a clear workflow of the frameworks. Through this 

case study, we can also show the limitation of existing published work on data-driven turbulence 

modeling. 
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7.3. Implementation 

7.3.1. Implementation of turbulent flow modeling by Type I ML 

Zhang & Duraisamy [18] used the spatiotemporal function to modify the k-ω model that 

can inform RANS simulation by assimilating data from DNS. Figure 7.1 depicts the application 

of Type I ML framework for data-driven turbulence modeling as proposed by Zhang & Duraisamy 

[18]. In correspondence with the structure described in Figure 3.7, the procedure includes the 

following elements: 

Element 1. Assume scale separation is achievable such that DNS data (ΨDNS) can be used 

to obtain a spatiotemporal function (α) in the k-ω model. Then collect RANS data (ΨRANS) 

for computing candidates of flow features (Q). 

Element 2. Average DNS data (ΨDNS) to match the dimension of RANS data (ΨRANS). Then 

scale the flow features (Q) from element 1 as inputs for element 3 

Element 3. Select flow features (Q) through the hill-climbing feature selection, and use the 

results as training inputs for element 5. 

Element 4. Compute the training targets, spatiotemporal factors (α), by solving the inverse 

problem using the turbulence kinetic energy equation and averaged ΨDNS.  

Element 5. Utilize an NN algorithm to capture the underlying correlation between flow 

features (Q) and spatiotemporal factors (α). After the training, output the FNN-based 

spatiotemporal model, FNN(Q(ΨRANS)), to element 6. 

Element 6. The g(ML(Q)) is equal to ML(Q) since there is no assumption made in the 

reference.  

Element 7. Implement the FNN-based spatiotemporal model into the k-ω model, and solve 

RANS equations for predictions. 
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Element 1. Collect the training data from the DNS and 
RANS simulations the k-ω model

ΨDNS & ΨRANS

Element 5. Use FNN to figure out the underlying physics behind the data, 
FNN(Q(ΨRANS)) ≈ α 

(Supervised learning with given inputs and targets)

Element 6. The g(ML(Q)) is equal to ML(Q) since there is no assumption made in the reference,
FNN(Q(ΨRANS))

 (Guidance to regularize FNN-based models)

Element 3. Select flow features (Q) calculated by 
ΨRANS  as training inputs, 

Q(ΨRANS)

Element 4. Compute the training targets, 
spatiotemporal factors (α), by solving the inverse 

problem using the turbulence kinetic energy 
equation and averaged ΨDNS. 

α = f(Q(ΨRANS))

Element 2. (a) Average ΨDNS to match the dimension 
of ΨRANS. (b) Scale the candidate flow features (Q) 

calculated by ΨRANS to [0, 1]   

Element 7. Perform fluid dynamics simulations with the FNN-based closure model for predictions

RANS

FNN-based closure model, FNN(Q(ΨRANS)) ≈ α 
 

Figure 7.1. Type I ML for turbulence modeling as proposed by Zhang & Duraisamy [18]. 
 

The study simulated 1D channel flow and used training datasets with friction Reynolds 

numbers (Reτ) [108] ranging from 180 to 4200. The result indicated that the reconstructed function 

(α) could be applied to the testing case with Reτ equal to 2000. 

 

7.3.2. Implementation of turbulent flow modeling by Type II ML 

Ling, Kurzawski & Templeton [19] utilized the ML-based Reynolds stress anisotropy 

tensors by tensor basis neural networks (TBNNs) to close RANS equations. Figure 7.2 depicts the 

application of Type II ML framework for data-driven turbulence modeling as proposed by Ling, 
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Kurzawski & Templeton [19]. In correspondence with the structure described in Figure 3.8, the 

procedure includes the following elements: 

Element 1. Perform RANS simulations with the k-ε model. The results (ΨRANS) are prior 

solutions for training. 

Element 2. Perform DNS simulations with identical system characteristics in element 1. 

The results (ΨDNS) are baseline solutions for training. 

Element 3. Average ΨDNS to match the dimension of ΨRANS. 

Element 4. Select five tensor invariants (λ = [λ1, ..., λ5]) as training inputs for the input layer 

and ten isotropic basis tensors (T = [T1, ..., T10]) as inputs for the tensor input layer by 

ΨRANS. λ(ΨRANS) and T(ΨRANS) are training inputs to element 6. It is noted that the λ and T 

can be computed from the non-dimensionalized strain rate (S) and rotation rate tensors (R). 

Element 5. Compute Reynolds stress anisotropy tensors (b) by averaged ΨDNS as the 

training targets that can supervise NN algorithms to learn from data. 

Element 6 Use NN algorithms to represent the underlying correlation of the non-

dimensionalized strain rate (S), rotation rate tensors (R) and Reynolds stress anisotropy 

tensors (b). After the training, output the TBNN-based Reynolds stress anisotropy tensor, 

TBNN(f(λ(ΨRANS)), T(ΨRANS)), to element 8. 

Element 7. Execute a new RANS (k-ε) simulation (Ψ’RANS) with different system 

characteristics. Then use the solution to obtain λ and T as inputs to element 8.  

Element 8. Use λ and T from element 7 as inputs to query values from the TBNN-based 

Reynolds stress anisotropy tensor model, TBNN(f(λ(ΨRANS)), T(ΨRANS)). Output the 

Reynolds stress anisotropy tensor as fixed fields to element 9. 
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Element 9. Implement the results from element 8 into the RANS solver, SIERRA Fuego 

[109], for predictions. 

 

Element 1. Perform RANS simulations with 
the k-ε model,

ΨRANS

Element 6. Use NN algorithms to figure out the 
underlying physics behind the data, 
TBNN(f(λ(ΨRANS)), T(ΨRANS)) ≈ b 

(Supervised learning with given inputs and targets)

Element 4. Select (a) five scalar tensor 
invariants (λ = [λ1, ..., λ5]) as training inputs 
for the input layer and (b) 10 isotropic basis 
tensors (T = [T1, ..., T10]) as inputs for the 

tensor input layer by ΨRANS. 
λ(ΨRANS) & T(ΨRANS)

Element 5. Compute the training targets, 
Reynolds stress anisotropy tensor (b) by 

averaged ΨDNS, 
b = g(f(λ(ΨRANS)), T(ΨRANS)) 

Element 3. Average ΨDNS to match the dimension of 
ΨRANS.

Element 8. Query the output from the ML-based 
discrepancy/error/closure models,
TBNN(f(λ(Ψ’RANS)), T(Ψ’RANS))

Element 2. Perform DNS simulations,
ΨDNS

Element 7. Perform RANS 
simulations with the k-ε model 
for predictions to compute the 
tensor invariants and isotopic 

basis tensors,
λ(Ψ’RANS) & T(Ψ’RANS)Element 9. Inform the RANS simulations with the 

fixed-filed of the Reynolds stress anisotropy tensor 
for predictions  

Figure 7.2. Type II ML for turbulence modeling as proposed by Ling et al. [19]. 
 

Two flow cases had been tested including turbulent duct flow (Reb = 2000) and flow over 

a wavy wall (Re = 6850). The TBNN was trained by six cases with various Reynolds number given 

in Table 7.1. The results indicated that the TBNN with embedded Galilean invariance could be 

used for Reynolds stress anisotropy predictions which is better than generic NNs. Notably, the 

TBNN yields more accurate predictions than the LEVM. 

Table 7.1. High-fidelity simulations for training the TBNN. 
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Duct flow 
[110] 

Channel 
flow 
[111] 

Inclined jet 
in cross-
flow [112] 

Perpendicular 
jet in cross-
flow [113] 

Flow around 
a square 
cylinder 
[114] 

Flow through a 
converging-diverging 
channel flow [115] 

Reb = 3500 Reτ = 590 Rejet = 5000 Rejet = 5000 Re = 21400 Reτ = 600 
 

Kutz [3] suggested that DNNs have the potential to bring a paradigm shift in modeling of 

complex flows thanks to their capability to capture multiscale features from data. He indicated that 

ROMs for fluids based on the singular value decomposition have difficulties to capture transient 

and multiscale phenomena as well as invariances due to scaling. On the contrary, DNNs can 

capture multi-scale features [116] through its hierarchy. Although DNNs can predict trends in data 

well, it is a challenge for DNNs to generate readily interpretable physical models. 

 

7.4. Summary 

Zhang & Duraisamy’s [18] work belongs to Type I ML. They showed that the 

spatiotemporal function allowed the k- ω model to assimilate data. However, the method requires 

Boussinesq hypothesis that limits the function form to eddy viscosity models. It requires an 

extensive demonstration to show the applicability of the method regarding flows in a different 

geometry and regime. 

Ling, Kurzawski & Templeton’s [19] work belongs to Type II ML. They demonstrated that 

TBNN captured the invariant of Reynolds stress modeling for various flows. The work used fixed 

fields of the DL-based Reynolds stress to close RANS equations. The authors also mentioned that 

the stress model should be iteratively queried while solving RANS equations. The demonstrations 

use steady-state cases to show that the TBNN can improve RANS predictions in different 

geometries and at distinct Reynolds numbers. For Type II ML there exists an open question about 

what the magnitude of errors can be before it is too late to bring a prior solution to a baseline.   
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CHAPTER 8. CASE STUDY E: DATA-DRIVEN TURBULENCE MODELING 

8.1. Introduction 

Reynolds-averaged Navier-Stokes (RANS) equations are widely used in fluid engineering 

simulation and analysis due to its computational efficiency. Reynolds stress is essential to close 

RANS equations. Linear eddy viscosity models (LEVMs) are attractive to represent Reynolds 

stress due to their computational efficiency. LEVMs include Spalart-Allmaras [22], k-ε [23], and 

k-ω [24] models that require extensively evaluated and calibrated for different flow characteristics. 

Consequently, performance of different models are limited in their calibration domains and exhibit 

different degrees of uncertainty in prediction. Tracey, Duraisamy & Alonso [86] demonstrated that 

the Menter’s k-ω model [117] yielded large uncertainty for the calculation of Reynolds stress 

anisotropy. 

The growing interest in machine learning (ML), especially deep learning (DL), application 

for science and engineering leads to data-driven modeling of Reynolds stress. Deep learning (DL) 

[4] belongs to a branch of machine learning (ML), and it is a universal approximator [44] that can 

capture underlying correlations behind data. DL (or deep neutral networks, DNNs) with its 

hierarchical model structure can leverage values of large datasets from relevant experiments and 

simulations without limiting to a single data source. Such feature can achieve total data-model 

integration [14] that is capable of constructing fluid closures over a range of flow regimes. Based 

on data and knowledge requirements, Chang & Dinh [118] classified five types of ML frameworks 

for using ML in thermal fluid simulation. The present work employs Type I (physics-separated) 

and Type II (physics-evaluated) ML frameworks [118] for the development of DL-based Reynolds 

stress. 
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Type I ML [118] requires a scale separation assumption [79, 82] such that closure relations 

can be derived separately from conservation equations using experimental data and ML models. 

Then simulation solves conservation equations with embedded ML-based closures. Closure 

relations by Type I ML are iteratively queried during simulation. Previous Type I ML applications 

included system-level flow modeling and Reynolds-averaged turbulence modeling. Chang & Dinh 

[88, 89] employed DL-based closures to model system pressure drop and boiling channel flow. 

Ma, Lu & Tryggvason [71] used neural networks (NNs) to surrogate fluid closures from simulating 

isothermal bubbly flow. Tracy, Duraisamy & Alonso [75] and Zhang & Duraisamy [18] used 

shallow NNs to achieve data-driven turbulence modeling. Although Type I ML has been employed 

for flow simulation, previous works do not investigate in data requirement for developing DL-

based closures with predictive capabilities. In the present work, we demonstrate a method to 

quantify the predictive capability of DNNs based on training datasets with different qualities. 

Type II ML [118] requires knowledge on selections of simulation models as low-fidelity 

models, which are efficient for computation. Model uncertainty can be reduced by high-fidelity 

simulation such as direct numerical simulation and large eddy simulation. Closure relations by 

Type II ML can be built to correlate the inputs (mean flow properties by low-fidelity simulation) 

and targets (quantities of interest by high-fidelity simulation). To employ Type II ML in thermal 

fluid simulation, we need to run low-fidelity simulation with embedded mechanistic closures to 

obtain mean flow properties as model inputs. Then we use the inputs to query outputs from ML-

based closures. The outputs, fixed values, are implemented in the low-fidelity model to replace the 

mechanistic closure. The Type II ML approach is similar to the strategy to leverage high-fidelity 

data proposed by Lewis et al. [15]. Previous Type II ML works included Reynolds-averaged 

turbulence modeling. Ling, Kurzawski & Templeton [19] used DL-based Reynolds stress with 
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embedded Galilean invariance to close RANS, and they demonstrated predictive capabilities of 

the DL-based stress for flows in different geometries. However, they focused on steady flow 

applications. In the percent work, we demonstrate that DL-based Reynolds stress can be used for 

unsteady flow simulation. 

Kutz [3] addressed several open challenges for applications of DL-based closures such as 

requirements of training data. Ling & Templeton [43] applied the Mahalanobis to indicate the 

similarity between training and testing data. In the present paper, Type I and Type II ML [118] are 

studied to investigate the requirements of DL-based Reynolds stress development. The case study 

in the present work is formulated based on: (i) How large training datasets should be to train DL-

based closures? (ii) What are the necessary and sufficient flow features? These questions are 

fundamental to define data requirements of thermal fluid simulation with embedded DL-based 

closures. We define the RANS simulation with embedded DL-based closures as RANS-DL. The 

present paper investigates how to apply RANS-DL to accomplish data-driven turbulence modeling 

of computational fluid dynamics by assimilating available, relevant, and adequately evaluated 

data.  

The case study is structured to include objectives (Section 8.2), assumption testing (Section 

8.3), formulation of the case study (Section 8.4), flow features coverage mapping (Section 8.5), 

implementation of ML frameworks (Section 8.6), results (Section 8.7), lessons learned (Section 

8.8), and summary (Section 8.9). 

 

8.2. Objectives 

The objectives include three aspects. First, we want to test whether DL can capture the 

hidden physics without knowing the complete flow history. Second, we investigate what is the 
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essential and necessary flow features for the DL-based Reynolds stress to reconstruct the reference 

solution. Finally, we explore the limits of Type I and Type II ML in the case study. 

 

8.3. Assumption testing 

Data-driven modeling by DL requires a substantial amount of data. To investigate the data 

requirement, we formulate three tests to investigate how to use DL to close RANS equations. The 

first test is to find the essential datasets to reconstruct the history of flow transients by RANS-DL. 

The second test is to determine necessary flow features as inputs for DL-based closures. Finally, 

the last test is to examine the applicability of Type I and Type II ML for unsteady flow simulation. 

8.3.1. Assumption testing on the data requirement 

We assume that DL can discover hidden time derivatives from spatially distributed velocity 

fields collected from different flow patterns. Therefore, we can sample data from various 

simulation time steps and train DNNs using total data. The assumption testing includes training 

data obtained from reference solutions by RANS simulation. The success criterion depends on 

whether RANS-DL can reconstruct reference solutions. 

8.3.2. Assumption testing on the flow feature selection 

We assume that the sufficient and necessary flow features can be defined by spatial 

derivatives of velocity fields. DL belongs to supervised learning [41] which requires inputs and 

targets for training. For DL-based Reynolds stress, the inputs are flow features that represent mean 

flow properties, and the target is the Reynolds stress tensor. We select input flow features based 

on the incompressible momentum equation [20] given by Eq. (7.1) where 𝑢𝑢� is the mean velocity 

and i, j, and k denote directions. D/Dt, ρ, �̅�𝑝, 𝜏𝜏�̅�𝑖𝑖𝑖, μ, and δij are the material derivative, fluid density, 

mean pressure, Reynolds stress tensor, molecular viscosity, and Kronecker delta. We can 
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manipulate Eq. (7.1) into Eq. (7.2) that shows the dependency of Reynolds stress. Eq. (7.3) gives 

the derivative of Reynolds stress as a function of several bases from Eq. (7.2). 

2
3

j iji i k
ij

j j j i k j

uDu u up
Dt x x x x x x

τ
ρ µ µδ

  ∂ ∂∂ ∂∂ ∂
= − + + − +   ∂ ∂ ∂ ∂ ∂ ∂   

   (7.1) 

2
3

ij ji i k
ij

j j j j i k

uDu u up
x Dt x x x x x
τ

ρ µ µδ
  ∂ ∂∂ ∂∂ ∂

= + − + −   ∂ ∂ ∂ ∂ ∂ ∂   
   (7.2) 

, , , ,i j kij i
ij

j j j j j i j k

Du p u u uf
x Dt x x x x x x x
τ

ρ µ µ µδ
  ∂    ∂ ∂ ∂ ∂ ∂ ∂ ∂

=         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
  (7.3) 

Based on the first assumption testing, time derivatives are not selected as training inputs 

since data are steady for each dataset. The merged PISO-SIMPLE algorithm [119, 120] is 

implemented for pimpleFoam that use the projection method [121, 122] to solve RANS equations. 

Since pressure is separately solved from the momentum equation, we further assume that the 

pressure term can be excluded from training inputs. As a result, the essential flow features for DL-

based Reynolds stress can be represented by remaining spatial derivatives of velocities. Eq. (7.4) 

uses the matrix form to show Reynolds stress (τ) as a dyadic product between the derivative 

operator and velocity (U). The dyadic product in Eq. (7.4) results in nine velocity derivatives as 

input flow features. Targets are the Reynolds stress symmetry tensor that includes six stress 

components. The assumption testing is to examine whether those nine flow features are sufficient 

and necessary for surrogating Reynolds stress by DNNs. 

( )( )T
turb f= ∇⊗τ U      (7.4) 

8.3.3. Assumption testing on Type I and Type II ML 

Chang & Dinh proposed Type I and Type II ML frameworks [118] to build closure 

relations for thermal fluid simulation. We implement these two frameworks for data-driven 
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turbulence modeling using DL-based Reynolds stress in Section 8.6 to explore performance of 

each framework. Closure relations are iteratively queried in Type I ML while solving conservation 

equations. Type II ML solves conservation equations with fixed closure relations. Therefore, we 

assume Type I ML is capable of simulating unsteady flow while Type II ML has limitations in 

transient problems. The goal of Type I ML is to reproduce transient solutions by RANS. Type II 

ML aims at exploring what the magnitude of errors can be before it is too late to bring solutions to 

the quasi-steady state from a transient state. The assumption testing is to evaluate whether the goals 

for each ML framework is achieved. 

 

8.4. Formulation of the case study 

8.4.1. Numerical experiment 

The numerical experiment is formulated to evaluate performance of RANS simulation with 

embedded DL-based Reynold stress (RANS-DL). The RANS simulation using the k-ε model 

serves as reference solutions that are used to train DL-based Reynolds stress. Figure 8.1 depicts 

the simulation configuration created by Pitz and Daily [123] which is used to explore the 

requirements for data-driven turbulence modeling. The 2D geometry includes a backward-facing 

step and converging nozzle. System characteristics are summarized in Table 8.1. This geometry 

configuration is complex enough since unsteady flow is affected by the turbulence mixing layer 

growth, entrainment rate, and reattachment length. The k-ε model has been validated [124] for this 

geometry. The pimpleFoam solver [39] in OpenFOAM [38] is used to generate data for the 

development of DL-based Reynolds stress. 
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Figure 8.1. Geometry configurations of RANS simulation. 

 

Table 8.1. System characteristics for RANS simulation. 
Initial Conditions 

Velocity 0 m/s 
Pressure 0 bar 

Boundary Conditions 
Inlet velocity (10, 0, 0) m/s 
Inlet pressure Zero gradient 
Outlet velocity Zero gradient 
Outlet pressure 0 bar 

Transport Properties 
Kinematic viscosity 10-5 m2/s 

 

8.4.2. Training data 

Training data are generated by RANS simulation with the k-ε model. The equations are 

solved by pimpleFoam using fixed time step, 2.4x10-5 sec. Four datasets are created and listed in 

Table 8.2. The first three datasets involve millions of data points, and the last dataset has hundreds 

of thousands of data points. The data in T10A and T10B are uniformly sampled from ten various 

times, and sampling time ranges are given in Table 8.2. T10A includes less transient details than 

T10B because the data are sampled from a coarse time interval in T10A. The baseline dataset 

includes data sampled from twenty separate times, and it is used to evaluate performances of 

RANS-DL. 
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Table 8.2. Generated datasets sampled at various times with distinct flow patterns. 

Dataset 
Data Quantity Total datasets sampled from 

various times (sec) Description Inputs 
(x106) 

Targets 
(x105) 

T1 0.11 0.76 0.1 Training dataset 
T10A 1.15 7.65 [0.01, 0.1] Training dataset 
T10B 1.15 7.65 [0.010024, 0.01024] Training dataset 

Baseline 2.30 15.30 [0.010024, 0.01048] Validating dataset 
QSS 0.11 0.76 1 Validating dataset 

 

The QSS (quasi-steady-state) dataset is sampled from RANS simulation. The QSS solution 

is checked by the mean square error (MSE) defined by Eq. (7.5) where N, i, y, and yref  are the total 

data points, ith data point, solution at the current time step (tn) and previous time step (tn-1). Figure 

8.2 depicts MSE analysis for the simulation running from 0.1 to 1 sec. Based on the result, the 

QSS dataset is sampled at t = 1 sec. 

 
( )2
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 (7.5) 

 

 
Figure 8.2. MSE analysis to check whether the quasi-steady-state condition is achieved. 

 

1 10 20 30 40 50 60 70 80 90
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

M
SE

 (m
/s

) 

dt n = t n - t n-1



www.manaraa.com

 

 129 

8.5. Flow features coverage mapping 

Flow features coverage mapping (FFCM) is a 2D graph that shows distributions of high-

dimensional flow features. It can be used to quantify whether physics is sufficiently covered by 

training data. If the mapping between training and applications shows similar distributions, we are 

confident in predictive results by RANS-DL. The discrepancy between two FFCM can be 

quantified by Eq. (7.5) using MSE for point-by-point comparisons. 

FFCM is obtained by a two-step approach. First, k-mean clustering [125, 126] is employed 

to classify flow features based on their similarities by computing distances between centroids of 

clusters and data points. Data points are assigned to a cluster if the minimum distance is achieved. 

Then centroids of clusters are updated based on data points within a cluster. The process is 

iteratively repeated until convergence is reached. The clustering results are multidimensional 

because our selected flow features include nine components of spatial derivatives of velocity 

fields. 

Second, we use t-SNE (t-distributed stochastic neighbor embedding) [127] to visualize the 

clustering result that is flow features coverage mapping. t-SNE is a method for dimensionality 

reduction, and it can project high-dimensional data in a 2D or 3D graph while preserving 

characteristics of data points. t-SNE first calculates pairwise conditional probabilities using 

Gaussian kernels for high-dimensional data such that similar points have high probabilities while 

dissimilar points have low probabilities. Then t-SNE uses a t distribution to measure pairwise 

similarities of low-dimensional data points. Positions of low-dimensional points are calculated by 

minimizing Kullback-Leibler divergence [128] between t and Gaussian distributions in low-

dimensional and high-dimensional spaces. A t distribution has fat tails at both ends that ensure 

dissimilar points in low-dimensional space to be placed away from similar points. Therefore, t-



www.manaraa.com

 

 130 

SNE can embed high-dimensional data in a low-dimensional space. By k-mean clustering and t-

SNE, we can build FFCM to quantify similarities of flow features between RANS-DL and training 

datasets. FFCM can be used to evaluate whether the training of DL-based Reynolds stress is 

sufficient. 

Figure 8.3 depicts FFCM by T10A data at two times. The discrepancy can be quantified 

by computing the Euclidean distance. Eq. (7.6) gives the mean Euclidean distance (d) where N and 

i denote the total data and ith data point. (𝑥𝑥,𝑦𝑦)  and (𝑥𝑥�,𝑦𝑦�)  are coordinates from two distinct 

mapping. We can observe significant differences between Figure 8.3(a) and Figure 8.3(b), and 

their distance is 43.67. Figure 8.4 shows flow features coverage mapping by T10B data at two 

times, and the distance between Figure 8.4(a) and Figure 8.4(b) is 11.31. The results indicate that 

a sharp transient happens between two consecutive time intervals in T10A. It is because the 

sampling interval is coarser in T10A than the interval in T10B. Figure 8.3 and Figure 8.4 serve as 

the references that are used to examine physics coverages of DL-based Reynolds stress in 

applications. If features mapping in applications has a similar distribution as the references, we 

expect a good prediction of velocity fields by RANS-DL. 

 
(a)        (b) 

Figure 8.3. Visualization of flow features coverage mapping (FFCM) using t-SNE at (a) t = 0.01 
sec and (b) t = 0.02 sec from T10A dataset. The flow features are clustered by k-means 

clustering with variously labeled colors. 
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(a)        (b)  

Figure 8.4. Visualization of flow features coverage mapping (FFCM) using t-SNE at (a) t = 
0.010096 sec from T10B dataset and (b) t = 0.010456 sec from the V10 dataset. The flow 

features are clustered by k-means clustering with variously labeled colors. 
 

8.6. Implementation of ML frameworks 

8.6.1. Implementation of NN-based Reynolds stress model 

We use DL (or DNNs) to surrogate Reynolds stress due to the nonparametric modeling 

feature of DNNs. This feature allows the model form of DNNs to be adaptive based on various 

data quantities. Figure 8.5 depicts a structure of DNNs including nine input flow features and six 

output Reynolds stress components. We use Tensorflow [57] to design a ten-layer DNN with 512 

hidden units (HUs) for DL-based Reynolds stress. The activation function (σ), rectified linear units 

(ReLU) [51], is used in each hidden layer (HL). Eq. (7.7) defines a cost function by Euclidean loss 

where N, yi,data, and yi,model are the total number of training data, ith training data, and ith model 

solution. DNNs’ parameters such as weights and biases are tuned based on data using Adam [99] 

algorithm. 
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Large data can increase the difficulty of training DNNs. In fact, neural networks with many 

HLs may suffer from gradient vanishing or explosion issues that slow the learning process. Batch 

normalization (BN) [129] is a method that can reduce internal covariate shifts in DNNs to prevent 

those issues. Therefore, BN is implemented in each HL to accelerate the speed of training. Figure 

8.6(a) depicts the comparison of Euclidean loss by training DNNs with different data. T10A010 

denotes that training data are from T10A at t = 0.1 sec while T10A includes data from all times. 

T10A010 only involves one-tenth data points of T10A. Figure 8.6(a) shows that the learning using 

T10A is much slower than T10A010. Figure 8.6(b) reveals that the learning becomes fast while 

implementing BN in DNNs. Figure 8.7 depicts a model-data plot to show that DL-based Reynolds 

stress is well-trained by T10B dataset since model outputs agree with data. 
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Figure 8.5. Structure of a DNN as a surrogate of Reynolds stress. 

 
(a)        (b) 

Figure 8.6. (a) Comparison of Euclidean loss between DNNs using training datasets T1 and 
T10A. (b) Comparison of the loss between DNNs using training datasets T10A and T10A-BN. 

 

 
Figure 8.7. Model-data plot for the DNN trained by T10B data. 

 

8.6.2. Implementation of Type I ML for data-driven turbulence modeling 

The goal of Type I ML [118] is to build DL-based Reynolds stress that allows RANS-DL 

to reconstruct the results by baseline solutions. Type I ML requires a scale separation assumption 

[14, 79] that allows closure relations to be separately trained from conservation equations. Figure 
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8.8 depicts Type I ML framework for the development of DL-based Reynolds stress. The 

procedure includes the following elements: 

Element 1. Assume the separation of scales is achievable such that Reynolds stress can be 

calculated from RANS data (ΨRANS) using Boussinesq hypothesis with the k-ω model. 

Transient data (ΨRANS) are given in Table 8.2. 

Element 2. Compute a dyadic product between the gradient operator (𝛁𝛁) and velocity fields 

(U) from ΨRANS that results in nine velocity derivatives as flow features (Q). 

Element 3. Select flow features (Q) calculated by element 2 as training inputs for element 

5. 

Element 4. Compute training targets, Reynolds stress (τ), by solving the linear eddy 

viscosity model using the velocity fields, turbulence kinetic energy, and dissipation rate 

from ΨRANS. The results become targets for element 5. 

Element 5. Utilize Adam algorithm [99] to capture underlying correlations between flow 

features (Q) and Reynolds stress (τ) by DNNs. After the training, output the DL-based 

Reynolds stress, DNN(Q(ΨRANS)), to the next element. 

Element 6. Constrain the output of DNN(Q(ΨRANS)) by g(DNN(Q(ΨRANS))) to satisfy the 

property of 2D simulations, i.e., Reynolds stress components should be zero in x-z and y-

z directions. 

Element 7. Implement DL-based Reynolds stress in pimpleFoam solver. Then solve the 

RANS with the embedded DL-based closure that is iteratively queried. The baseline dataset 

in Table 8.2 is used to evaluate the performance of RANS-DL. 
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Element 1. Generate data using RANS with the k-ε 
model (ΨRANS).

Element 5. Use DL algorithms to figure out underlying correlations behind data, 
DNN(Q(ΨRANS)) ≈ τ .

Element 6. Apply constraints to DL-based Reynolds stress based on 2D simulation properties,
g(DNN(Q(ΨRANS))) .

Element 3. Select the results from element 2 as 
flow features, Q(ΨRANS).

Element 4. Calculate Reynolds stress from 
ΨRANS as targets, τ.

Element 2. Compute                 .

Element 7. Solve RANS model with DL-based Reynolds stress.

RANS equations

DL-based Reynolds stress
 

Figure 8.8. Type I ML for Reynolds-averaged turbulence modeling. 
 

8.6.3. Implementation of Type II ML for data-driven turbulence modeling 

The goal of Type II ML [118] is to use the reference Reynolds stress to bring solutions to 

the quasi-steady state (QSS) from various transient states. The reference Reynolds stress is 

calculated by QSS dataset in Table 8.2. Figure 8.9 depicts the workflow of Type II ML for data-

driven turbulence modeling. The procedure involves the following elements: 

Element 1. Solve RANS equations with the k-ε model until the solution (ΨRANS, ꝏ) reaches 

the quasi-steady state. QSS dataset is given in Table 8.2, and it serves as the reference that 

can be used to compute raining targets and to evaluate whether RANS-DL achieves the 
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goal. The goal is to test if Type II ML can bring solutions from various transient states to 

the quasi-steady state. 

Element 2. Perform RANS simulations with the k-ε model to obtain solutions (ΨRANS) at 

various transient states. 

Element 3. Compute a dyadic product between the gradient operator (𝛁𝛁) and velocity fields 

(U) from ΨRANS. The results include nine velocity derivatives. 

Element 4. Select the nine spatial velocity derivatives from element 3 as flow features (Q) 

which become training inputs for element 6. 

Element 5. Compute reference Reynolds stress (τ) by Boussinesq hypothesis with the k-ε 

model and ΨRANS, ꝏ. The results become targets for element 6 that can supervise DL 

algorithms to learn from data. 

Element 6. Utilize DL to correlate flow features (Q) from various transient states to the 

reference Reynolds stress (τ). After the training, output DL-based Reynolds stress, 

DNN(Q(ΨRANS)), to element 8. 

Element 7. Execute RANS simulations with the k-ε model (Ψ’RANS), and stop simulations 

at a particular transient state. Then use the solution to compute new flow features (Q’) as 

inputs to element 8.  

Element 8. Query the values of DL-based Reynolds stress by new flow features (Q’). Then 

output fixed Reynolds stress fields to element 9. 

Element 9. Implement fixed Reynold stress fields in pimpleFoam solver to close RANS 

equations. 
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Element 1. Solve RANS equations with the 
k-ε model until solutions reach the quasi-

steady state,
ΨRANS, ꝏ .

Element 6. Use DL algorithms to figure out 
underlying correlations behind data, 

DNN(Q(ΨRANS)) ≈ τ.

Element 4. Select the results from element 2 
as flow features, Q(ΨRANS).

Element 5. Calculate Reynolds stress from 
ΨRANS, ꝏ as targets, τ.

Element 3. Compute                by ΨRANS .

Element 8. Query outputs from DL-based Reynolds 
stress,

DNN(Q(Ψ’RANS)).

Element 2. Solve RANS equations with the k-ε 
model, and stop simulations at various 

transient states,
ΨRANS .

Element 7. Solve new RANS 
equations with the k-ε model, 

and stop simulations at various 
transient states,

Q(Ψ’RANS).

Element 9. Close RANS simulations with fixed 
Reynolds stress fields.

 
Figure 8.9. Type II ML for data-driven turbulence modeling using RANS model with DL-based 

Reynolds stress. 
 

Table 8.2 shows that Type II ML only includes one-tenth data points of the data used in 

Type I ML. Since Figure 8.7 demonstrates that DL can successfully infer a surrogate that fits large 

data by T10B, the challenge of Type II ML is not subject to performance of DL. Instead, the 

challenge is whether Type-II ML can bring solutions to the quasi-steady state from an arbitrary 

transient state. To investigate this limitation, we directly explore the problem from element 7. We 

assume that DNNs can output ideal fields of reference Reynolds stress without uncertainty. No 

matter what flow features are inputted, DL-based Reynolds stress can always deliver the reference 

stress field. Therefore, we can implement the reference stress field in RANS equations and evaluate 

the performance of Type II ML while simulating unsteady flow. 
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8.7. Results 

To explore the assumption testing, we analyze results into three sections. The first section 

shows that errors of RANS-DL by Type I ML are accumulated along with the simulation time. 

The second section focuses on testing whether RANS-DL by Type I ML can recover the baseline 

solutions for unsteady flow. The last section aims at testing if RANS-DL by Type II ML can find 

solutions to the quasi-steady state from a transient state. 

8.7.1. Error accumulation along with time during simulation 

The case is formulated to analyze how errors propagate when training data do not 

sufficiently cover the flow features in applications. We use T10A to train DL-based Reynolds 

stress, and implement the stress in RANS equations. Then the simulation is started at t = 0.1 sec 

using initial conditions obtained from the baseline. Figure 8.10(a) depicts velocity profiles at t = 

0.015 sec by RANS-T10A001 which stands for RANS-DL starting at t = 0.01 sec. The trend of 

RANS-T10A001 velocity (dash line) agrees with the baseline (solid line). At t = 0.065 sec, Figure 

8.10(b) shows that the uncertainty of RANS-T10A006 (dash-dot line) is much smaller than the 

uncertainty of RANS-T10A001 while comparing results to the baseline. RANS-T10A006 

represents RANS-DL starting at t = 0.06 sec. Figure 8.10 indicates that T10A does not contain 

enough data to allow DL to capture all transient behaviors. Initially, there are strong transients in 

unsteady flow simulation, and errors caused by DL-based Reynolds stress grow along with the 

time. 
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(a)        (b) 

Figure 8.10. (a) Comparison of velocities between the baseline and RANS-T10A at x = 0.07 m 
and t = 0.015 sec with initial conditions from the baseline at t = 0.01 sec. (b) Comparison of 

velocities of the baseline, RANS-T10A001, and RANS-T10A006 at x = 0.07 m and t = 0.065 sec 
with initial conditions from the baseline at t = 0.01 and 0.06 sec for RANS-T10A001 and RANS-

T10A006. 
 

8.7.2. Exploration of data requirements to reconstruct RANS solutions 

This task is formulated to compare the performance of RANS-DL with the stress closures 

trained by T10A and T10B. Figure 8.11 depicts initial Reynolds stress and velocities of the 

baseline, RANS-T10A, and RANS-T10B at t = 0.01 sec. 

 

 
(a)     (b)     (c) 

Figure 8.11. Comparison of initial kinematic Reynolds stress (a) between the baseline and 
RANS-T10A (b) and between the baseline and RANS-T10B at t = 0.01 sec. (c) Comparison of 

the initial velocities for the baseline, RANS-T10A, and RANS-T10B at t = 0.01 sec. 
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Figure 8.12-Figure 8.15 illustrate the results by RANS-DL at t = 0.01012, 0.01024, 

0.01036, and 0.01048 sec. The first two times are within the training domain of T10B while the 

last two times are in extrapolation domains. For T10A, all simulation times are in extrapolation 

domains because its data are sampled from a coarse time interval. Therefore, RANS simulation 

using DL-based Reynolds stress by T10A (RANS-T10A) yields large uncertainty than RANS-

T10B. Figure 8.14(b) shows that RANS-T10B starts to deviate from the baseline when the 

simulation is outside of the training domain. Although the simulation time is too short to make 

significant changes in velocity profiles, Figure 8.15(c) depicts that the velocity of RANS-T10A is 

different from the baseline at the bottom location. 

 

 
(a)     (b)     (c) 

Figure 8.12. Comparison of kinematic Reynolds stress (a) between the baseline and RANS-T10A 
and (b) between the baseline and RANS-T10B at t = 0.01012 sec and x = 0.07 m. (c) 

Comparison of the velocity of the baseline, RANS-T10A, and RANS-T10B. 
 

 
(a)     (b)     (c) 

Figure 8.13. Comparison of kinematic Reynolds stress (a) between the baseline and RANS-T10A 
and (b) between the baseline and RANS-T10B at t = 0.01024 sec and x = 0.07 m. (c) 

Comparison of the velocity of the baseline, RANS-T10A, and RANS-T10B. 
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(a)     (b)     (c) 

Figure 8.14. Comparison of kinematic Reynolds stress (a) between the baseline and RANS-T10A 
and (b) between the baseline and RANS-T10B at t = 0.01036 sec and x = 0.07 m. (c) 

Comparison of the velocity of the baseline, RANS-T10A, and RANS-T10B. 
 

 
(a)     (b)     (c) 

Figure 8.15. Comparison of kinematic Reynolds stress (a) between the baseline and RANS-T10A 
and (b) between the baseline and RANS-T10B at t = 0.01048 sec and x = 0.07 m. (c) 

Comparison of the velocity of the baseline, RANS-T10A, and RANS-T10B. 
 

8.7.2.1. Visualization of the coverage of the flow features in applications by FFCM 

We can use flow features coverage mapping (FFCM) to quantify the coverage of flow 

features in training datasets. Figure 8.16 depicts FFCM for RANS-T10A and RANS-T10B at t = 

0.01012 sec. For RANS-T10A, we compare Figure 8.16(a) to Figure 8.3(a). Flow features in 

Figure 8.16(a) exhibit different distributions than the features in Figure 8.3(a). The discrepancy 

between two figures can be quantified by the Euclidean distance which is 35.62. The result 

indicates that T10A dataset is insufficient to cover the transient details in Figure 8.12(a). For 

RANS-T10B, we compare Figure 8.16(b) to Figure 8.4(a). The two figures have similar 
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distributions since the distance is 4.05 that is much smaller than the distance by RANS-T10A. The 

result indicates that T10B sufficiently covers the transient details so that RANS-T10B agrees with 

the baseline in Figure 8.12(b).  

Figure 8.17 shows FFCM for RANS-T10A and RANS-T10B at t = 0.01048 sec which is 

outside of the training domain. Figure 8.17(a) shows FFCM for RANS-T10A, and the result is 

dissimilar to Figure 8.3(a) which is FFCM by training data, T10A. Figure 8.17(b) depicts that the 

mapping for RANS-T10B deviates from Figure 8.4(b) because the simulation is outside of the 

training domain. However, the distance is 10.57 which is still smaller than RANS-T10A results. 

Figure 8.15 shows that the performance of RANS-T10B is better than the performance of RANS-

T10A. 

Table 8.3 summarizes the distances between distinct FFCM. Table 8.3 indicates that the 

distance between RANS-T10B and T10B is much smaller than the distance between RANS-T10A 

and T10A. The result implies that T10B covers more transient details than T10A. Therefore, 

RANS-T10B shows good predictive capabilities in Figure 8.12-Figure 8.15. The analysis by 

FFCM indicates that RANS-DL can make inferences from training data for prediction when 

training data sufficiently cover the physics in applications. 
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(a)        (b) 

Figure 8.16. Visualization of flow features coverage mapping (FFCM) using t-SNE for (a) 
RANS-T10A and (b) RANS-T10B at t = 0.01012 sec. The flow features are clustered by k-

means clustering with variously labeled colors. 
 

 
(a)        (b)  

Figure 8.17. Visualization of flow features coverage mapping (FFCM) using t-SNE for (a) 
RANS-T10A and (b) RANS-T10B at t = 0.01048 sec. The flow features are clustered by k-

means clustering with variously labeled colors. 
 

Table 8.3. Summary of Euclidean distances between different FFCM. 

Simulation time (sec) d between RANS-T10A and 
T10A (0.01 sec) 

d between RANS-T10B and 
T10B 

0.010096 35.62 4.05 
0.010456 38.91 10.57 
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8.7.2.2. Evaluation of RANS-DL using half of the solver time step 

This task is formulated to solve RANS-T10B using half of the solver time step (1.2x10-5 

sec). Figure 8.18 illustrates the comparison between RANS-T10B and the baseline for kinematic 

Reynolds stress and velocities at three times: 0.010096, 0.01024, and 0.010384 sec. When the 

solver time step is reduced, DL-based Reynolds stress is not sufficiently trained by those transient 

conditions. RANS-T10B cannot reproduce the identical solutions as the baseline. However, when 

RANS-T10B predicts flow transients in the training domain, the discrepancy to the baseline is still 

smaller than the errors in extrapolation domains. The results indicate that DL-based Reynolds 

stress can make inferences from the training data. 

 

 
(a)     (b)     (c) 

Figure 8.18. Comparison of kinematic Reynolds stress at x = 0.07 m between the RANS-T10B 
and baseline at t = (a) 0.010096, (b) 0.01024, and (c) 0.010384 sec with the solver time step size 

equal to 1.2x10-5 sec. 
 

8.7.2.3. Evaluation of RANS-DL using double the solver time step 

In this task, we increase the solver time step to 4.8x10-5 sec for RANS-T10B. Figure 8.19 

depicts RANS-T10B results for three times with the comparison to the baseline. The discrepancy 

occurs because solutions cannot make time convergence to the same value as the baseline solution. 
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(a)     (b)     (c) 

Figure 8.19. Comparison of kinematic Reynolds stress at x = 0.07 m between RANS-T10B and 
the baseline at t = (a) 0.010096, (b) 0.01024, and (c) 0.010384 sec with the solver time step size 

equal to 4.8x10-5 sec. 
 

8.7.2.4. Evaluation of RANS-DL by perturbing the inlet velocity 

In this task, we solve RANS-T10B with ± 10% perturbations of the inlet velocity. Figure 

8.20 and Figure 8.21 show the comparison between RANS-T10B and the baseline with inlet 

velocities, 11 and 9 m/s. Distinctions between RANS-DL and the baseline are expected since DL-

based Reynolds stress is not trained under these two conditions. 

 

 
(a)     (b)     (c) 

Figure 8.20. Comparison of kinematic Reynolds stress at x = 0.07 m between the baseline and 
RANS-T10B at t = (a) 0.01012, (b) 0.01024, and (c) 0.01036 sec with the inlet velocity equal to 

11 m/s. 
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(a)     (b)     (c) 

Figure 8.21. Comparison of kinematic Reynolds stress at x = 0.07 m between the baseline and 
RANS-T10B at t = (a) 0.01012, (b) 0.01024, and (c) 0.01036 sec with the inlet velocity equal to 

9 m/s. 
 

8.7.3. Evaluation of the performance of using Type II ML with transient data 

The last task is formulated to investigate whether Type II ML can bring RANS-DL to the 

quasi-steady state from a transient state. Figure 8.22 sketches the streamwise velocity field at the 

quasi-steady state as the reference solution. Figure 8.23(a) illustrates the simulations with the 

various start time ranging from t = 0.06 sec to t = 0.4 sec. Figure 8.23(b) gives the results at t = 1 

sec. The results reveal that Type II ML can take RANS simulations to the quasi-steady state if 

initial states are close to the reference solution. Otherwise, RANS-DL by Type II ML can lead to 

physically unstable solutions. 

 

 
Figure 8.22. Streamwise velocity field for the quasi-steady state by the baseline solution at t = 1 

sec. 
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tinitial = 0.06 sec     tfinal = 1 sec 

 
tinitial = 0.1 sec     tfinal = 1 sec 

 
tinitial = 0.2 sec     tfinal = 1 sec 

 
tinitial = 0.3 sec     tfinal = 1 sec 

 
tinitial = 0.4 sec     tfinal = 1 sec 

 
(a)        (b) 

Figure 8.23. (a) Initial streamwise velocity field at different transient steps by the baseline 
solutions. (b) Final streamwise velocity field at t = 1 sec by the RANS model with the fixed field 

of the Reynolds stress from the quasi-steady state solution. 
 

Figure 8.24(a) shows MSE analysis for RANS simulation with the initial state at t = 0.06 

sec. The MSE is calculated by evaluating the difference (dtn) between the solutions from two 

consecutive time steps (tn-1 and tn). When the initial state is far from the quasi-steady state, Type 

II ML leads to physically unstable solutions. Figure 8.24(b) depicts the result by using the initial 
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condition at t = 0.6 sec. Since the velocity field is close to the reference value, the solution can 

reach the quasi-steady state. Figure 8.25 presents initial MSEs and final MSEs by comparing the 

reference solution to RANS simulations with distinct start times given in Table 8.4. Figure 8.25 

indicates that case 6 is the threshold that allows Type II ML to carry solutions from a transient 

state to the quasi-steady state. It is noted that the initial condition of case 6 is close to the quasi-

steady-state solution. 

 
(a)        (b) 

Figure 8.24. MSE analysis for showing the solution is (a) unstable when the reference Reynolds 
stress is injected at t = 0.06 sec and (b) the solution is stable when the reference Reynolds stress 

is injected at t = 0.6 sec. 
 

 
Figure 8.25. MSE analysis for searching the threshold discrepancy between the initial transient 

and reference velocity fields that can bring the transient solution to the quasi-steady state by 
Type II ML. 
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Table 8.4. RANS simulations with different initial states. 
Case 1 2 3 4 5 6 7 
Start time (sec) 0.06 0.1 0.2 0.3 0.4 0.5 0.6 

 

8.8. Lessons learned 

Based on the case study in this work, we observed several properties of Type I and Type 

II ML. Type I ML can deliver DL-based Reynolds stress to close RANS equations for unsteady 

flow simulation. Training data only requires spatial derivatives of velocity fields without using 

time derivative quantities because the time history is embedded in transient data. However, data 

are required to have sufficient spatiotemporal resolutions to include sufficient transient details that 

allow DL to discover underlying correlations behind data. 

The uncertainty of RANS-DL is accumulated along with simulation time if flow features 

are in extrapolation domains. This is because the physics is not covered by training data, and the 

coverage of physics can be quantified by computing the Euclidean distance between two flow 

features coverage mapping (FFCM). When FFCM shows similar distributions between training 

and applications, RANS-DL can achieve satisfactory performance in prediction. Therefore, when 

data is insufficient, DL-based Reynolds stress should not be used to predict flow transients which 

are far from the training domain.  

Type II ML can cause physically unstable solutions when initial states of RANS simulation 

are far from the quasi-steady-state solution. RANS simulation by Type II ML converges to 

reference solutions only when initial conditions are close enough to reference solutions. This 

essence limits the use of Type II ML for unsteady flow simulation.  
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8.9. Summary 

The case study demonstrates data-driven turbulence modeling for transient applications 

that use RANS equations with DL-base Reynolds stress to replicate transient flow prediction by 

RANS (k-ε) simulation. The case study also indicates flow features by first-order spatial 

derivatives of velocity fields are necessary and sufficient to reconstruct the RANS results.  

The goal of using DL-based Reynolds stress is to ensure that RANS-DL is globally 

extrapolating while local variables are within interpolation domains. The results of analysis 

suggest that DL-based Reynolds stress requires a substantial amount of training data to ensure the 

predictive capability. Flow features coverage mapping has the potential to quantify values of data 

that allow us to examine the physics coverage of training datasets. 
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CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The dissertation research is motivated by the growing interest and development of machine 

learning models in thermal fluid simulation. The trend is powered by the advent of data-intensive 

research methods, such as modern thermal fluid experiments and high-fidelity numerical 

simulations, affordable computing (data processing) power and memory, and progress in machine 

learning methods, particularly in deep learning (or multilayer neural networks). 

Deep learning (DL) has the potential to advance the state-of-the-art in the modeling of 

nuclear system thermal-hydraulics. Base on the case studies, data-driven modeling with deep 

learning potentially shortens the model development phase without taking years to decades to 

understand insights of data. However, there is yet to exist a standard approach to accomplish data-

driven modeling of nuclear system thermal-hydraulics (NSTH). The dissertation includes two 

approaches to investigate how to leverage values of data by machine learning to support NSTH 

simulation. First, a system is established to characterize different approaches to use machine 

learning for building data-driven models in NSTH simulation. Framework selection depends on 

knowledge and data requirements. Second, synthetic examples demonstrate and address the 

applications and challenges of using deep learning to achieve data-driven modeling of NSTH. With 

sufficient training data, DL-based closure models work well with conservation equations that can 

be used for predictions. 

The primary contribution of the dissertation is the classification system of machine learning 

frameworks to illustrate transparent workflows for the development of machine learning models 

in NSTH simulation. Notably, the development of Type III ML framework can build closure 

models without the necessity of a scale separation assumption. Section 9.1 highlights the 
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contributions of the dissertation, and Section 9.2 includes the discussion of recommendations for 

future work.  

 

9.1. Contributions 

1). The classification of five machine learning frameworks for data-driven modeling 

of nuclear system thermal-hydraulics to leverage the value of “Big Data,” compared to the 

traditional framework for developing NSTH models. Five ML frameworks for nuclear system 

thermal-hydraulics (NSTH) have been introduced in the dissertation including physics-separated 

ML (PSML or Type I ML), physics-evaluated ML (PEML or Type II ML), physics-integrated ML 

(PIML or Type III ML), physics-recovered (PRML or Type IV ML), and physics-discovered ML 

(PDML or Type V ML). With the classification system, it is helpful to select an optimal method 

to develop data-driven models based on knowledge and data requirements. The frameworks 

provide the procedures to leverage values of data to support NSTH simulation that potentially 

extend the application of nuclear codes. Based on the results of case studies, data-driven modeling 

with deep learning potentially help accelerate the development of thermal-hydraulics models 

without spending years to decades to understand the data. 

2). The development of Type III ML frameworks to build closure relations without 

requiring the separation of scales, compared to the traditional development of closure 

relations by SET data. Type III (Physics-Integrated Machine Learning) framework is formulated 

and introduced for the first time in this study. In Type III, conservation equations are involved in 

the training of machine learning models, thus alleviating the requirement of a scale separation 

assumption, and potentially reducing the necessity of physics decomposition. Correspondingly, 

Type III ML framework presents more stringent requirements on modeling and substantially 
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higher computing resources for training. Based on insights from the case study performed of heat 

conduction, Type III ML has the highest potential in extracting the value from “big data” in thermal 

fluid research, while ensuring data-model consistency. 

3). The development of methods to select an optimal deep learning-based closure 

model to achieve NSTH simulation. Solving PDE models is complex and requires certain 

conditions to make the problem well-posed. The case studies of system-level two-phase mixture 

models demonstrate that the optimal DL-based slip model can be found by using a notion of model-

insight consistency. The insight refers to the best knowledge of the problem of interest. The insight 

also potentially regularizes DL-based models to prevent them from outputting physically 

unreasonable values or unphysical oscillations. The optimal DL model is defined as models with 

the maximal predictive capability, given available datasets and insights into machine learning 

process. Notably, guided by Occam’s razor principle, the optimal model should be the deep neural 

network with the simplest structure that captures the insights and the data within an uncertainty 

range. 

4). The application of using deep learning-based Reynolds stress to close RANS 

equations with a substantial amount of training data, compared to the traditional eddy 

viscosity approach. Deep learning has the potential to infer a Reynolds stress model directly from 

data without using the Boussinesq hypothesis of eddy viscosity. The case study of Reynolds-

averaged turbulence modeling demonstrates that deep learning can capture the hidden physics 

behind millions of data points. The result indicates that the DL-based Reynolds stress model can 

be correlated to the mean flow features by taking the first spatial derivative of the velocity field. 

By examining flow features coverage mapping, the synthesis example confirms that the selected 

flow features are necessary and sufficient to preserve the characteristics of Reynolds stress from 
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data. Flow features coverage mapping can be used to quantify the physics coverage of flow features 

and has the potential to determine the requirement of data quantity. 

 

9.2. Recommendations for future work 

9.2.1. Uncertainty quantification for DL-based closure relations 

Uncertainty quantification for deep learning (DL) is a challenge because neural networks 

include lots of hyperparameters. It is necessary to combine neural networks with Bayesian 

inference to reflect model uncertainty. In the meantime, experimental uncertainty should also be 

considered. Future work should formulate case studies to demonstrate how to use Bayesian deep 

neural networks for thermal fluid simulation. 

9.2.2. Uncertainty quantification for PDE constrained DL simulation 

DL-based closures tend to accumulate errors during simulation. A regularization method 

is essential to inform coupled PDE-DL simulation to prevent error amplification. 

9.2.3. Challenges on Type III ML 

There are technical challenges that need to be addressed before Type III models deliver 

their promises in practical thermal fluid simulation. The challenges include: 

i. Complex interactions of ML-based closures with a system of PDEs (including 

discontinuities in hyperbolic systems);  

ii. Effect of the non-local character of ML-based models on PDE solution methods; 

iii. Implementation and effectiveness of multiple closure models, particularly in 

multiphase and thermal flows; 

iv. Useage of training data from IETs and SETs simultaneously.  
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9.2.4. Assessment of the applicability of a DL generated closure using a code 

Numerical solutions by a computer code involve several sources of uncertainty such as 

discretization error and model form uncertainty. Therefore, it is essential to evaluate whether a 

DL-based closure created by manufactured solutions from a code is applicable to another code. 

9.2.5. Two-phase mixture models with DL-based closures 

According to Occam’s razor, the best model should be the simplest model that works. Two-

phase mixture models have the potential to reduce model form uncertainty of closure relations. It 

is worthy to explore whether DL-based closures can extend the applicability of two-phase mixture 

models over a range of flow regimes. 
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